2,092 research outputs found

    Optimal Dynamic Distributed MIS

    Full text link
    Finding a maximal independent set (MIS) in a graph is a cornerstone task in distributed computing. The local nature of an MIS allows for fast solutions in a static distributed setting, which are logarithmic in the number of nodes or in their degrees. The result trivially applies for the dynamic distributed model, in which edges or nodes may be inserted or deleted. In this paper, we take a different approach which exploits locality to the extreme, and show how to update an MIS in a dynamic distributed setting, either \emph{synchronous} or \emph{asynchronous}, with only \emph{a single adjustment} and in a single round, in expectation. These strong guarantees hold for the \emph{complete fully dynamic} setting: Insertions and deletions, of edges as well as nodes, gracefully and abruptly. This strongly separates the static and dynamic distributed models, as super-constant lower bounds exist for computing an MIS in the former. Our results are obtained by a novel analysis of the surprisingly simple solution of carefully simulating the greedy \emph{sequential} MIS algorithm with a random ordering of the nodes. As such, our algorithm has a direct application as a 33-approximation algorithm for correlation clustering. This adds to the important toolbox of distributed graph decompositions, which are widely used as crucial building blocks in distributed computing. Finally, our algorithm enjoys a useful \emph{history-independence} property, meaning the output is independent of the history of topology changes that constructed that graph. This means the output cannot be chosen, or even biased, by the adversary in case its goal is to prevent us from optimizing some objective function.Comment: 19 pages including appendix and reference

    Polynomial Silent Self-Stabilizing p-Star Decomposition

    Get PDF
    We present a silent self-stabilizing distributed algorithm computing a maximal p-star decomposition of the underlying communication network. Under the unfair distributed scheduler, the most general scheduler model, the algorithm converges in at most 12∆m + O(m + n) moves, where m is the number of edges, n is the number of nodes, and ∆ is the maximum node degree. Regarding the move complexity, our algorithm outperforms the previously known best algorithm by a factor of ∆. While the round complexity for the previous algorithm was unknown, we show a 5 [n/(p+1)] + 5 bound for our algorithm

    Lattice Linear Problems vs Algorithms

    Full text link
    Modelling problems using predicates that induce a partial order among global states was introduced as a way to permit asynchronous execution in multiprocessor systems. A key property of such problems is that the predicate induces one lattice in the state space which guarantees that the execution is correct even if nodes execute with old information about their neighbours. Thus, a compiler that is aware of this property can ignore data dependencies and allow the application to continue its execution with the available data rather than waiting for the most recent one. Unfortunately, many interesting problems do not exhibit lattice linearity. This issue was alleviated with the introduction of eventually lattice linear algorithms. Such algorithms induce a partial order in a subset of the state space even though the problem cannot be defined by a predicate under which the states form a partial order. This paper focuses on analyzing and differentiating between lattice linear problems and algorithms. It also introduces a new class of algorithms called (fully) lattice linear algorithms. A characteristic of these algorithms is that the entire reachable state space is partitioned into one or more lattices and the initial state locks into one of these lattices. Thus, under a few additional constraints, the initial state can uniquely determine the final state. For demonstration, we present lattice linear self-stabilizing algorithms for minimal dominating set and graph colouring problems, and a parallel processing 2-approximation algorithm for vertex cover. The algorithm for minimal dominating set converges in n moves, and that for graph colouring converges in n+2m moves. The algorithm for vertex cover is the first lattice linear approximation algorithm for an NP-Hard problem; it converges in n moves. Some part is cut due to 1920 character limit. Please see the pdf for full abstract.Comment: arXiv admin note: text overlap with arXiv:2209.1470

    Opinion Dynamics in Social Networks with Hostile Camps: Consensus vs. Polarization

    Get PDF
    Most of the distributed protocols for multi-agent consensus assume that the agents are mutually cooperative and "trustful," and so the couplings among the agents bring the values of their states closer. Opinion dynamics in social groups, however, require beyond these conventional models due to ubiquitous competition and distrust between some pairs of agents, which are usually characterized by repulsive couplings and may lead to clustering of the opinions. A simple yet insightful model of opinion dynamics with both attractive and repulsive couplings was proposed recently by C. Altafini, who examined first-order consensus algorithms over static signed graphs. This protocol establishes modulus consensus, where the opinions become the same in modulus but may differ in signs. In this paper, we extend the modulus consensus model to the case where the network topology is an arbitrary time-varying signed graph and prove reaching modulus consensus under mild sufficient conditions of uniform connectivity of the graph. For cut-balanced graphs, not only sufficient, but also necessary conditions for modulus consensus are given.Comment: scheduled for publication in IEEE Transactions on Automatic Control, 2016, vol. 61, no. 7 (accepted in August 2015

    Consensus of Multi-Agent Networks in the Presence of Adversaries Using Only Local Information

    Full text link
    This paper addresses the problem of resilient consensus in the presence of misbehaving nodes. Although it is typical to assume knowledge of at least some nonlocal information when studying secure and fault-tolerant consensus algorithms, this assumption is not suitable for large-scale dynamic networks. To remedy this, we emphasize the use of local strategies to deal with resilience to security breaches. We study a consensus protocol that uses only local information and we consider worst-case security breaches, where the compromised nodes have full knowledge of the network and the intentions of the other nodes. We provide necessary and sufficient conditions for the normal nodes to reach consensus despite the influence of the malicious nodes under different threat assumptions. These conditions are stated in terms of a novel graph-theoretic property referred to as network robustness.Comment: This report contains the proofs of the results presented at HiCoNS 201

    On products and powers of linear codes under componentwise multiplication

    Full text link
    In this text we develop the formalism of products and powers of linear codes under componentwise multiplication. As an expanded version of the author's talk at AGCT-14, focus is put mostly on basic properties and descriptive statements that could otherwise probably not fit in a regular research paper. On the other hand, more advanced results and applications are only quickly mentioned with references to the literature. We also point out a few open problems. Our presentation alternates between two points of view, which the theory intertwines in an essential way: that of combinatorial coding, and that of algebraic geometry. In appendices that can be read independently, we investigate topics in multilinear algebra over finite fields, notably we establish a criterion for a symmetric multilinear map to admit a symmetric algorithm, or equivalently, for a symmetric tensor to decompose as a sum of elementary symmetric tensors.Comment: 75 pages; expanded version of a talk at AGCT-14 (Luminy), to appear in vol. 637 of Contemporary Math., AMS, Apr. 2015; v3: minor typos corrected in the final "open questions" sectio
    • …
    corecore