3,929,316 research outputs found
Autonomous linear lossless systems
We define a lossless autonomous system as one having a quadratic differential form associated with it called an energy function, which is positive and which is conserved. We define an oscillatory system as one which has all its trajectories bounded on the entire time axis. In this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next we discuss a few properties of energy functions of autonomous lossless systems and a suitable way of splitting a given energy function into its kinetic and potential energy components
On Linear Information Systems
Scott's information systems provide a categorically equivalent, intensional
description of Scott domains and continuous functions. Following a well
established pattern in denotational semantics, we define a linear version of
information systems, providing a model of intuitionistic linear logic (a
new-Seely category), with a "set-theoretic" interpretation of exponentials that
recovers Scott continuous functions via the co-Kleisli construction. From a
domain theoretic point of view, linear information systems are equivalent to
prime algebraic Scott domains, which in turn generalize prime algebraic
lattices, already known to provide a model of classical linear logic
Solving Sparse Integer Linear Systems
We propose a new algorithm to solve sparse linear systems of equations over
the integers. This algorithm is based on a -adic lifting technique combined
with the use of block matrices with structured blocks. It achieves a sub-cubic
complexity in terms of machine operations subject to a conjecture on the
effectiveness of certain sparse projections. A LinBox-based implementation of
this algorithm is demonstrated, and emphasizes the practical benefits of this
new method over the previous state of the art
- …
