18 research outputs found

    Linear Information Coupling Problems

    Get PDF
    Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. Moreover, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will also present the application of this approach to the point-to-point channel and the general broadcast channel, which demonstrates how our technique simplifies information theory problems.Comment: To appear, IEEE International Symposium on Information Theory, July, 201

    The Linear Information Coupling Problems

    Full text link
    Many network information theory problems face the similar difficulty of single-letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. In addition, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will present the application of this approach to the point-to-point channel, general broadcast channel, and the multiple access channel (MAC) with the common source. It can be shown that with this approach, information theory problems, such as the single-letterization, can be reduced to some linear algebra problems. Moreover, we show that for the general broadcast channel, transmitting the common message to receivers can be formulated as the trade-off between linear systems. We also provide an example to visualize this trade-off in a geometric way. Finally, for the MAC with the common source, we observe a coherent combining gain due to the cooperation between transmitters, and this gain can be quantified by applying our technique.Comment: 27 pages, submitted to IEEE Transactions on Information Theor

    Probabilistic Clustering Using Maximal Matrix Norm Couplings

    Full text link
    In this paper, we present a local information theoretic approach to explicitly learn probabilistic clustering of a discrete random variable. Our formulation yields a convex maximization problem for which it is NP-hard to find the global optimum. In order to algorithmically solve this optimization problem, we propose two relaxations that are solved via gradient ascent and alternating maximization. Experiments on the MSR Sentence Completion Challenge, MovieLens 100K, and Reuters21578 datasets demonstrate that our approach is competitive with existing techniques and worthy of further investigation.Comment: Presented at 56th Annual Allerton Conference on Communication, Control, and Computing, 201

    Communication Theoretic Data Analytics

    Full text link
    Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data is modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data is used to demonstrate the advantages. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.Comment: Published in IEEE Journal on Selected Areas in Communications, Jan. 201

    Compressed Secret Key Agreement: Maximizing Multivariate Mutual Information Per Bit

    Full text link
    The multiterminal secret key agreement problem by public discussion is formulated with an additional source compression step where, prior to the public discussion phase, users independently compress their private sources to filter out strongly correlated components for generating a common secret key. The objective is to maximize the achievable key rate as a function of the joint entropy of the compressed sources. Since the maximum achievable key rate captures the total amount of information mutual to the compressed sources, an optimal compression scheme essentially maximizes the multivariate mutual information per bit of randomness of the private sources, and can therefore be viewed more generally as a dimension reduction technique. Single-letter lower and upper bounds on the maximum achievable key rate are derived for the general source model, and an explicit polynomial-time computable formula is obtained for the pairwise independent network model. In particular, the converse results and the upper bounds are obtained from those of the related secret key agreement problem with rate-limited discussion. A precise duality is shown for the two-user case with one-way discussion, and such duality is extended to obtain the desired converse results in the multi-user case. In addition to posing new challenges in information processing and dimension reduction, the compressed secret key agreement problem helps shed new light on resolving the difficult problem of secret key agreement with rate-limited discussion, by offering a more structured achieving scheme and some simpler conjectures to prove

    Euclidean network information theory

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 121-123).Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distributions. In this thesis, we develop such a structure by assuming that the distributions of interest are all close to each other. Under this assumption, the Kullback-Leibler (K-L) divergence is reduced to the squared Euclidean metric in an Euclidean space. In addition, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will present the application of this approach to the point-to-point channels, general broadcast channels (BC), multiple access channels (MAC) with common sources, interference channels, and multi-hop layered communication networks without or with feedback. It can be shown that with this approach, information theory problems, such as the single-letterization, can be reduced to some linear algebra problems. Solving these linear algebra problems, we will show that for the general broadcast channels, transmitting the common message to receivers can be formulated as the trade-off between linear systems. We also provide an example to visualize this trade-off in a geometric way. For the MAC with common sources, we observe a coherent combining gain due to the cooperation between transmitters, and this gain can be obtained quantitively by applying our technique. In addition, the developments of the broadcast channels and multiple access channels suggest a trade-off relation between generating common messages for multiple users and transmitting them as the common sources to exploit the coherent combining gain, when optimizing the throughputs of communication networks. To study the structure of this trade-off and understand its role in optimizing the network throughput, we construct a deterministic model by our local approach that captures the critical channel parameters and well models the network. With this deterministic model, for multi-hop layered networks, we analyze the optimal network throughputs, and illustrate what kinds of common messages should be generated to achieve the optimal throughputs. Our results provide the insight of how users in a network should cooperate with each other to transmit information efficiently.by Shao-Lun Huang.Ph.D
    corecore