125,165 research outputs found

    Symmetric measures via moments

    Full text link
    Algebraic tools in statistics have recently been receiving special attention and a number of interactions between algebraic geometry and computational statistics have been rapidly developing. This paper presents another such connection, namely, one between probabilistic models invariant under a finite group of (non-singular) linear transformations and polynomials invariant under the same group. Two specific aspects of the connection are discussed: generalization of the (uniqueness part of the multivariate) problem of moments and log-linear, or toric, modeling by expansion of invariant terms. A distribution of minuscule subimages extracted from a large database of natural images is analyzed to illustrate the above concepts.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6144 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems

    Get PDF
    We consider an integrable Hamiltonian system with n-degrees of freedom whose first integrals are invariant under the symplectic action of a compact Lie group G. We prove that the singular Lagrangian foliation associated to this Hamiltonian system is symplectically equivalent, in a G-equivariant way, to the linearized foliation in a neighborhood of a compact singular non-degenerate orbit. We also show that the non-degeneracy condition is not equivalent to the non-resonance condition for smooth systems.Comment: 21 pages, revised version, main changes in section

    Isospectral Flow and Liouville-Arnold Integration in Loop Algebras

    Get PDF
    A number of examples of Hamiltonian systems that are integrable by classical means are cast within the framework of isospectral flows in loop algebras. These include: the Neumann oscillator, the cubically nonlinear Schr\"odinger systems and the sine-Gordon equation. Each system has an associated invariant spectral curve and may be integrated via the Liouville-Arnold technique. The linearizing map is the Abel map to the associated Jacobi variety, which is deduced through separation of variables in hyperellipsoidal coordinates. More generally, a family of moment maps is derived, identifying certain finite dimensional symplectic manifolds with rational coadjoint orbits of loop algebras. Integrable Hamiltonians are obtained by restriction of elements of the ring of spectral invariants to the image of these moment maps. The isospectral property follows from the Adler-Kostant-Symes theorem, and gives rise to invariant spectral curves. {\it Spectral Darboux coordinates} are introduced on rational coadjoint orbits, generalizing the hyperellipsoidal coordinates to higher rank cases. Applying the Liouville-Arnold integration technique, the Liouville generating function is expressed in completely separated form as an abelian integral, implying the Abel map linearization in the general case.Comment: 42 pages, 2 Figures, 1 Table. Lectures presented at the VIIIth Scheveningen Conference, held at Wassenaar, the Netherlands, Aug. 16-21, 199

    Local Kernels and the Geometric Structure of Data

    Full text link
    We introduce a theory of local kernels, which generalize the kernels used in the standard diffusion maps construction of nonparametric modeling. We prove that evaluating a local kernel on a data set gives a discrete representation of the generator of a continuous Markov process, which converges in the limit of large data. We explicitly connect the drift and diffusion coefficients of the process to the moments of the kernel. Moreover, when the kernel is symmetric, the generator is the Laplace-Beltrami operator with respect to a geometry which is influenced by the embedding geometry and the properties of the kernel. In particular, this allows us to generate any Riemannian geometry by an appropriate choice of local kernel. In this way, we continue a program of Belkin, Niyogi, Coifman and others to reinterpret the current diverse collection of kernel-based data analysis methods and place them in a geometric framework. We show how to use this framework to design local kernels invariant to various features of data. These data-driven local kernels can be used to construct conformally invariant embeddings and reconstruct global diffeomorphisms

    Gordon's inequality and condition numbers in conic optimization

    Full text link
    The probabilistic analysis of condition numbers has traditionally been approached from different angles; one is based on Smale's program in complexity theory and features integral geometry, while the other is motivated by geometric functional analysis and makes use of the theory of Gaussian processes. In this note we explore connections between the two approaches in the context of the biconic homogeneous feasiblity problem and the condition numbers motivated by conic optimization theory. Key tools in the analysis are Slepian's and Gordon's comparision inequalities for Gaussian processes, interpreted as monotonicity properties of moment functionals, and their interplay with ideas from conic integral geometry
    corecore