787,725 research outputs found

    Heat buffers improve capacity and exploitation degree of geothermal energy sources

    Get PDF
    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy greenhouse heat, carbon dioxide and electricity demand at minimum cost. Tank buffers, basement buffers and aquifers were considered as short and long term buffers. Simulations were carried out for a 10ha sweet pepper and a 30ha tomato greenhouse (15ha intensively lighted). Standard heating systems based on central boiler and co-generation were used as a reference and compared with combinations of boilers, co-generators, geothermal heat and heat buffer strategies. Crop production and greenhouse climate were simulated and resource demand determined for normal greenhouse operation. A linear programming algorithm was used to apply resources and equipment available to the model at minimum cost. Results show that heat buffers help to reduce the required capacity of a geothermal heat source, and increase both the utilisation degree of the source and the cover percentage of greenhouse heat demand. The technically most feasible solution for long term buffering was the basement buffer which allows high buffer volumes without loss of useful space and heat loss contributes to greenhouse heating, however this solution was economically not feasible. Also the deep aquifer was a good option, however exploitation risks and manageability are potential problems. Integration of geothermal heat with other sources resulted in the best solutions that were both technically and economically feasible. Simulation showed at gas price level 30¿ct.m-3, that geothermal heat was cheaper than central boiler and even co-generation heat when hours of operation exceed 1000h.y-1. Instead of using large buffers, peak loads can also be covered by central boilers. Simulated solutions reduced gas consumption with 60 to 95%

    Climate Fluctuations and Climate Sensitivity

    Get PDF
    Some evidence is presented that the main part of the atmospheric climate system is such that small forcings in the heat balance lead to linear responses in the surface temperature field. By examining first a noise forced energy-balance climate model and then comparing it with a long run of a highly symmetrical general circulation model, one finds a remarkable connection between spatial autocorrelation statistics and the thermal influence function for a point heat source. These findings are brought together to indicate that this particular climatological field may be largely governed by linear processes

    Voltage regulator with multiple parallel power source sections

    Get PDF
    Voltage regulator provides improved voltage-regulating system in which power dissipation and consequent heat generation are minimized. Each power source section is controlled sequentially so that only one operates in a linear range at a time

    The application of satellite data to study the effects of latent heat release on cyclones

    Get PDF
    Generalized energetics were studied for nonlinear inviscid symmetric instability (SI). It was found that the linear theory fails to predict the stability in certain cases where the basic state is transitional between stability and instability. The initial growth of the SI perturbations can be fairly well approximated by linear theory, but the long time nonlinear evaluations will be bonded energetically if the SI region is finite. However, a further extension of the energetics to conditional symmetric instability (CSI) shows that the nonlinear evolution of circulation will energetically depend much more on the precipitation in a complicated way. By treating the latent heat as a source which is implicitly related to the motion field, the existence, uniqueness and stability of steady viscous (CSI) circulations are studied. Viscous CSI circulations are proved to be unique and asymptotically stable when the heat sources are weak and less sensitive to the motion perturbations. By considering the fact that moist updrafts are narrow and using eddy viscosity of 0(1,000 m squared/s) the stability criterion suggests that some frontal rainbands were probably dominated by the CSI mechanism even in their mature quasi-steady stage

    Augmented resolution of linear hyperbolic systems under nonconservative form

    Get PDF
    Hyperbolic systems under nonconservative form arise in numerous applications modeling physical processes, for example from the relaxation of more general equations (e.g. with dissipative terms). This paper reviews an existing class of augmented Roe schemes and discusses their application to linear nonconservative hyperbolic systems with source terms. We extend existing augmented methods by redefining them within a common framework which uses a geometric reinterpretation of source terms. This results in intrinsically well-balanced numerical discretizations. We discuss two equivalent formulations: (1) a nonconservative approach and (2) a conservative reformulation of the problem. The equilibrium properties of the schemes are examined and the conditions for the preservation of the well-balanced property are provided. Transient and steady state test cases for linear acoustics and hyperbolic heat equations are presented. A complete set of benchmark problems with analytical solution, including transient and steady situations with discontinuities in the medium properties, are presented and used to assess the equilibrium properties of the schemes. It is shown that the proposed schemes satisfy the expected equilibrium and convergence properties

    A SINDA '85 nodal heat transfer rate calculation user subroutine

    Get PDF
    This paper describes a subroutine, GETQ, which was developed to compute the heat transfer rates through all conductors attached to a node within a SINDA '85 thermal submodel. The subroutine was written for version 2.3 of SINDA '85. Upon calling GETQ, the user supplies the submodel name and node number which the heat transfer rate computation is desired. The returned heat transfer rate values are broken down into linear, nonlinear, source and combined heat loads
    corecore