50,241 research outputs found

    Convex conditions on decentralized control for graph topology preservation

    No full text
    International audienceThe paper focuses on the preservation of a given graph topology which is usually chosen to ensure its connectivity. This is an essential ingredient allowing interconnected systems to accomplish tasks by using decentralized control strategies. We consider a networked system with discrete-time dynamics in which the subsystems are able to communicate if an algebraic relation between their states is satisfied. Each subsystem is called agent and the connected subsystems are called neighbors. The agents update their state in a decentralized manner by taking into account the neighbors' states. The characterization of the local control feedback gains ensuring topology preservation is provided. The results are based on invariance and set-theory and yield to conditions in Linear Matrix Inequality (LMI) form. The conditions for topology preservation are applied to an illustrative example concerning partial state consensus of agents with double integrator dynamics

    Locally Optimal Estimation and Control of Cable Driven Parallel Robots using Time Varying Linear Quadratic Gaussian Control

    Full text link
    We present a locally optimal tracking controller for Cable Driven Parallel Robot (CDPR) control based on a time-varying Linear Quadratic Gaussian (TV-LQG) controller. In contrast to many methods which use fixed feedback gains, our time-varying controller computes the optimal gains depending on the location in the workspace and the future trajectory. Meanwhile, we rely heavily on offline computation to reduce the burden of online implementation and feasibility checking. Following the growing popularity of probabilistic graphical models for optimal control, we use factor graphs as a tool to formulate our controller for their efficiency, intuitiveness, and modularity. The topology of a factor graph encodes the relevant structural properties of equations in a way that facilitates insight and efficient computation using sparse linear algebra solvers. We first use factor graph optimization to compute a nominal trajectory, then linearize the graph and apply variable elimination to compute the locally optimal, time varying linear feedback gains. Next, we leverage the factor graph formulation to compute the locally optimal, time-varying Kalman Filter gains, and finally combine the locally optimal linear control and estimation laws to form a TV-LQG controller. We compare the tracking accuracy of our TV-LQG controller to a state-of-the-art dual-space feed-forward controller on a 2.9m x 2.3m, 4-cable planar robot and demonstrate improved tracking accuracies of 0.8{\deg} and 11.6mm root mean square error in rotation and translation respectively.Comment: 8 pages, 11 figures, accepted to IEEE International Conference on Intelligent Robotics and Systems (IROS) 202

    Distributed Consensus of Linear Multi-Agent Systems with Switching Directed Topologies

    Full text link
    This paper addresses the distributed consensus problem for a linear multi-agent system with switching directed communication topologies. By appropriately introducing a linear transformation, the consensus problem is equivalently converted to a stabilization problem for a class of switched linear systems. Some sufficient consensus conditions are then derived by using tools from the matrix theory and stability analysis of switched systems. It is proved that consensus in such a multi-agent system can be ensured if each agent is stabilizable and each possible directed topology contains a directed spanning tree. Finally, a numerical simulation is given for illustration.Comment: The paper will be presented at the 2014 Australian Control Conference (AUCC 2014), Canberra, Australi
    • …
    corecore