188 research outputs found

    Motion from "X" by Compensating "Y"

    Get PDF
    This paper analyzes the geometry of the visual motion estimation problem in relation to transformations of the input (images) that stabilize particular output functions such as the motion of a point, a line and a plane in the image. By casting the problem within the popular "epipolar geometry", we provide a common framework for including constraints such as point, line of plane fixation by just considering "slices" of the parameter manifold. The models we provide can be used for estimating motion from a batch using the preferred optimization techniques, or for defining dynamic filters that estimate motion from a causal sequence. We discuss methods for performing the necessary compensation by either controlling the support of the camera or by pre-processing the images. The compensation algorithms may be used also for recursively fitting a plane in 3-D both from point-features or directly from brightness. Conversely, they may be used for estimating motion relative to the plane independent of its parameters

    Linear Quasi-Parallax SfM for various classes of biological eyes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optical Flow in Mostly Rigid Scenes

    Full text link
    The optical flow of natural scenes is a combination of the motion of the observer and the independent motion of objects. Existing algorithms typically focus on either recovering motion and structure under the assumption of a purely static world or optical flow for general unconstrained scenes. We combine these approaches in an optical flow algorithm that estimates an explicit segmentation of moving objects from appearance and physical constraints. In static regions we take advantage of strong constraints to jointly estimate the camera motion and the 3D structure of the scene over multiple frames. This allows us to also regularize the structure instead of the motion. Our formulation uses a Plane+Parallax framework, which works even under small baselines, and reduces the motion estimation to a one-dimensional search problem, resulting in more accurate estimation. In moving regions the flow is treated as unconstrained, and computed with an existing optical flow method. The resulting Mostly-Rigid Flow (MR-Flow) method achieves state-of-the-art results on both the MPI-Sintel and KITTI-2015 benchmarks.Comment: 15 pages, 10 figures; accepted for publication at CVPR 201

    Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing

    Get PDF
    Multi-camera systems are being deployed in a variety of vehicles and mobile robots today. To eliminate the need for cost and labor intensive maintenance and calibration, continuous self-calibration is highly desirable. In this book we present such an approach for self-calibration of multi-Camera systems for vehicle surround sensing. In an extensive evaluation we assess our algorithm quantitatively using real-world data

    Deep Learning for 3D Visual Perception

    Get PDF
    La percepción visual 3D se refiere al conjunto de problemas que engloban la reunión de información a través de un sensor visual y la estimación la posición tridimensional y estructura de los objetos y formaciones al rededor del sensor. Algunas funcionalidades como la estimación de la ego moción o construcción de mapas are esenciales para otras tareas de más alto nivel como conducción autónoma o realidad aumentada. En esta tesis se han atacado varios desafíos en la percepción 3D, todos ellos útiles desde la perspectiva de SLAM (Localización y Mapeo Simultáneos) que en si es un problema de percepción 3D.Localización y Mapeo Simultáneos –SLAM– busca realizar el seguimiento de la posición de un dispositivo (por ejemplo de un robot, un teléfono o unas gafas de realidad virtual) con respecto al mapa que está construyendo simultáneamente mientras la plataforma explora el entorno. SLAM es una tecnología muy relevante en distintas aplicaciones como realidad virtual, realidad aumentada o conducción autónoma. SLAM Visual es el termino utilizado para referirse al problema de SLAM resuelto utilizando unicamente sensores visuales. Muchas de las piezas del sistema ideal de SLAM son, hoy en día, bien conocidas, maduras y en muchos casos presentes en aplicaciones. Sin embargo, hay otras piezas que todavía presentan desafíos de investigación significantes. En particular, en los que hemos trabajado en esta tesis son la estimación de la estructura 3D al rededor de una cámara a partir de una sola imagen, reconocimiento de lugares ya visitados bajo cambios de apariencia drásticos, reconstrucción de alto nivel o SLAM en entornos dinámicos; todos ellos utilizando redes neuronales profundas.Estimación de profundidad monocular is la tarea de percibir la distancia a la cámara de cada uno de los pixeles en la imagen, utilizando solo la información que obtenemos de una única imagen. Este es un problema mal condicionado, y por lo tanto es muy difícil de inferir la profundidad exacta de los puntos en una sola imagen. Requiere conocimiento de lo que se ve y del sensor que utilizamos. Por ejemplo, si podemos saber que un modelo de coche tiene cierta altura y también sabemos el tipo de cámara que hemos utilizado (distancia focal, tamaño de pixel...); podemos decir que si ese coche tiene cierta altura en la imagen, por ejemplo 50 pixeles, esta a cierta distancia de la cámara. Para ello nosotros presentamos el primer trabajo capaz de estimar profundidad a partir de una sola vista que es capaz de obtener un funcionamiento razonable con múltiples tipos de cámara; como un teléfono o una cámara de video.También presentamos como estimar, utilizando una sola imagen, la estructura de una habitación o el plan de la habitación. Para este segundo trabajo, aprovechamos imágenes esféricas tomadas por una cámara panorámica utilizando una representación equirectangular. Utilizando estas imágenes recuperamos el plan de la habitación, nuestro objetivo es reconocer las pistas en la imagen que definen la estructura de una habitación. Nos centramos en recuperar la versión más simple, que son las lineas que separan suelo, paredes y techo.Localización y mapeo a largo plazo requiere dar solución a los cambios de apariencia en el entorno; el efecto que puede tener en una imagen tomarla en invierno o verano puede ser muy grande. Introducimos un modelo multivista invariante a cambios de apariencia que resuelve el problema de reconocimiento de lugares de forma robusta. El reconocimiento de lugares visual trata de identificar un lugar que ya hemos visitado asociando pistas visuales que se ven en las imágenes; la tomada en el pasado y la tomada en el presente. Lo preferible es ser invariante a cambios en punto de vista, iluminación, objetos dinámicos y cambios de apariencia a largo plazo como el día y la noche, las estaciones o el clima.Para tener funcionalidad a largo plazo también presentamos DynaSLAM, un sistema de SLAM que distingue las partes estáticas y dinámicas de la escena. Se asegura de estimar su posición unicamente basándose en las partes estáticas y solo reconstruye el mapa de las partes estáticas. De forma que si visitamos una escena de nuevo, nuestro mapa no se ve afectado por la presencia de nuevos objetos dinámicos o la desaparición de los anteriores.En resumen, en esta tesis contribuimos a diferentes problemas de percepción 3D; todos ellos resuelven problemas del SLAM Visual.<br /

    Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing

    Get PDF
    Multikamerasysteme werden heute bereits in einer Vielzahl von Fahrzeugen und mobilen Robotern eingesetzt. Die Anwendungen reichen dabei von einfachen Assistenzfunktionen wie der Erzeugung einer virtuellen Rundumsicht bis hin zur Umfelderfassung, wie sie für teil- und vollautomatisches Fahren benötigt wird. Damit aus den Kamerabildern metrische Größen wie Distanzen und Winkel abgeleitet werden können und ein konsistentes Umfeldmodell aufgebaut werden kann, muss das Abbildungsverhalten der einzelnen Kameras sowie deren relative Lage zueinander bekannt sein. Insbesondere die Bestimmung der relativen Lage der Kameras zueinander, die durch die extrinsische Kalibrierung beschrieben wird, ist aufwendig, da sie nur im Gesamtverbund erfolgen kann. Darüber hinaus ist zu erwarten, dass es über die Lebensdauer des Fahrzeugs hinweg zu nicht vernachlässigbaren Veränderungen durch äußere Einflüsse kommt. Um den hohen Zeit- und Kostenaufwand einer regelmäßigen Wartung zu vermeiden, ist ein Selbstkalibrierungsverfahren erforderlich, das die extrinsischen Kalibrierparameter fortlaufend nachschätzt. Für die Selbstkalibrierung wird typischerweise das Vorhandensein überlappender Sichtbereiche ausgenutzt, um die extrinsische Kalibrierung auf der Basis von Bildkorrespondenzen zu schätzen. Falls die Sichtbereiche mehrerer Kameras jedoch nicht überlappen, lassen sich die Kalibrierparameter auch aus den relativen Bewegungen ableiten, die die einzelnen Kameras beobachten. Die Bewegung typischer Straßenfahrzeuge lässt dabei jedoch nicht die Bestimmung aller Kalibrierparameter zu. Um die vollständige Schätzung der Parameter zu ermöglichen, lassen sich weitere Bedingungsgleichungen, die sich z.B. aus der Beobachtung der Bodenebene ergeben, einbinden. In dieser Arbeit wird dazu in einer theoretischen Analyse gezeigt, welche Parameter sich aus der Kombination verschiedener Bedingungsgleichungen eindeutig bestimmen lassen. Um das Umfeld eines Fahrzeugs vollständig erfassen zu können, werden typischerweise Objektive, wie zum Beispiel Fischaugenobjektive, eingesetzt, die einen sehr großen Bildwinkel ermöglichen. In dieser Arbeit wird ein Verfahren zur Bestimmung von Bildkorrespondenzen vorgeschlagen, das die geometrischen Verzerrungen, die sich durch die Verwendung von Fischaugenobjektiven und sich stark ändernden Ansichten ergeben, berücksichtigt. Darauf aufbauend stellen wir ein robustes Verfahren zur Nachführung der Parameter der Bodenebene vor. Basierend auf der theoretischen Analyse der Beobachtbarkeit und den vorgestellten Verfahren stellen wir ein robustes, rekursives Kalibrierverfahren vor, das auf einem erweiterten Kalman-Filter aufbaut. Das vorgestellte Kalibrierverfahren zeichnet sich insbesondere durch die geringe Anzahl von internen Parametern, sowie durch die hohe Flexibilität hinsichtlich der einbezogenen Bedingungsgleichungen aus und basiert einzig auf den Bilddaten des Multikamerasystems. In einer umfangreichen experimentellen Auswertung mit realen Daten vergleichen wir die Ergebnisse der auf unterschiedlichen Bedingungsgleichungen und Bewegungsmodellen basierenden Verfahren mit den aus einer Referenzkalibrierung bestimmten Parametern. Die besten Ergebnisse wurden dabei durch die Kombination aller vorgestellten Bedingungsgleichungen erzielt. Anhand mehrerer Beispiele zeigen wir, dass die erreichte Genauigkeit ausreichend für eine Vielzahl von Anwendungen ist

    Robust Structure and Motion Recovery Based on Augmented Factorization

    Get PDF
    This paper proposes a new strategy to promote the robustness of structure from motion algorithm from uncalibrated video sequences. First, an augmented affine factorization algorithm is formulated to circumvent the difficulty in image registration with noise and outliers contaminated data. Then, an alternative weighted factorization scheme is designed to handle the missing data and measurement uncertainties in the tracking matrix. Finally, a robust strategy for structure and motion recovery is proposed to deal with outliers and large measurement noise. This paper makes the following main contributions: 1) An augmented factorization algorithm is proposed to circumvent the difficult image registration problem of previous affine factorization, and the approach is applicable to both rigid and nonrigid scenarios; 2) by employing the fact that image reprojection residuals are largely proportional to the error magnitude in the tracking data, a simple outliers detection approach is proposed; and 3) a robust factorization strategy is developed based on the distribution of the reprojection residuals. Furthermore, the proposed approach can be easily extended to nonrigid scenarios. Experiments using synthetic and real image data demonstrate the robustness and efficiency of the proposed approach over previous algorithms.22289016157335

    Proceedings of the 2015 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of proceedings of the talks given at the 2015 annual joint workshop of Fraunhofer IOSB and the Vision and Fusion Laboratory (IES) by the doctoral students of both institutions. The topics of individual contributions range from computer vision, optical metrology, and world modelling to data fusion and human-machine interaction

    Vision-based guidance and control of a hovering vehicle in unknown environments

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (leaves 115-122).This thesis presents a methodology, architecture, hardware implementation, and results of a system capable of controlling and guiding a hovering vehicle in unknown environments, emphasizing cluttered indoor spaces. Six-axis inertial data and a low-resolution onboard camera yield sufficient information for image processing, Kalman filtering, and novel mapping algorithms to generate a, high-performance estimate of vehicle motion, as well as an accurate three-dimensional map of the environment. This combination of mapping and localization enables a quadrotor vehicle to autonomously navigate cluttered, unknown environments safely. Communication limitations are considered, and a hybrid control architecture is presented to demonstrate the feasibility of combining separated proactive offboard and reactive onboard planners simultaneously, including a detailed presentation of a novel reactive obstacle avoidance algorithm and preliminary results integrating the MIT Darpa Urban Challenge planner for high-level control. The RAVEN testbed is successfully employed as a prototyping facility for rapid development of these algorithms using emulated inertial data and offboard processing as a precursor to embedded development. An analysis of computational demand and a comparison of the emulated inertial system to an embedded sensor package demonstrates the feasibility of porting the onboard algorithms to an embedded autopilot. Finally, flight results using only the single camera and emulated inertial data for closed-loop trajectory following, environment mapping, and obstacle avoidance are presented and discussed.by Spencer Greg Ahrens.S.M

    Model-based Optical Flow: Layers, Learning, and Geometry

    Get PDF
    The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes
    corecore