35,540 research outputs found

    Localized Linear Discriminant Analysis

    Get PDF
    Despite its age, the Linear Discriminant Analysis performs well even in situations where the underlying premises like normally distributed data with constant covariance matrices over all classes are not met. It is, however, a global technique that does not regard the nature of an individual observation to be classified. By weighting each training observation according to its distance to the observation of interest, a global classifier can be transformed into an observation specific approach. So far, this has been done for logistic discrimination. By using LDA instead, the computation of the local classifier is much simpler. Moreover, it is ready for applications in multi-class situations. --classification,local models,LDA

    Dynamic Linear Discriminant Analysis in High Dimensional Space

    Get PDF
    High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset.Comment: 34 pages; 3 figure

    Implicitly Constrained Semi-Supervised Linear Discriminant Analysis

    Full text link
    Semi-supervised learning is an important and active topic of research in pattern recognition. For classification using linear discriminant analysis specifically, several semi-supervised variants have been proposed. Using any one of these methods is not guaranteed to outperform the supervised classifier which does not take the additional unlabeled data into account. In this work we compare traditional Expectation Maximization type approaches for semi-supervised linear discriminant analysis with approaches based on intrinsic constraints and propose a new principled approach for semi-supervised linear discriminant analysis, using so-called implicit constraints. We explore the relationships between these methods and consider the question if and in what sense we can expect improvement in performance over the supervised procedure. The constraint based approaches are more robust to misspecification of the model, and may outperform alternatives that make more assumptions on the data, in terms of the log-likelihood of unseen objects.Comment: 6 pages, 3 figures and 3 tables. International Conference on Pattern Recognition (ICPR) 2014, Stockholm, Swede

    Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis

    Full text link
    Fisher's linear discriminant analysis (FLDA) is an important dimension reduction method in statistical pattern recognition. It has been shown that FLDA is asymptotically Bayes optimal under the homoscedastic Gaussian assumption. However, this classical result has the following two major limitations: 1) it holds only for a fixed dimensionality DD, and thus does not apply when DD and the training sample size NN are proportionally large; 2) it does not provide a quantitative description on how the generalization ability of FLDA is affected by DD and NN. In this paper, we present an asymptotic generalization analysis of FLDA based on random matrix theory, in a setting where both DD and NN increase and D/Nγ[0,1)D/N\longrightarrow\gamma\in[0,1). The obtained lower bound of the generalization discrimination power overcomes both limitations of the classical result, i.e., it is applicable when DD and NN are proportionally large and provides a quantitative description of the generalization ability of FLDA in terms of the ratio γ=D/N\gamma=D/N and the population discrimination power. Besides, the discrimination power bound also leads to an upper bound on the generalization error of binary-classification with FLDA
    corecore