706 research outputs found

    Besov regularity of solutions to the p-Poisson equation

    Full text link
    In this paper, we study the regularity of solutions to the pp-Poisson equation for all 1<p<1<p<\infty. In particular, we are interested in smoothness estimates in the adaptivity scale Bτσ(Lτ(Ω)) B^\sigma_{\tau}(L_{\tau}(\Omega)), 1/τ=σ/d+1/p1/\tau = \sigma/d+1/p, of Besov spaces. The regularity in this scale determines the order of approximation that can be achieved by adaptive and other nonlinear approximation methods. It turns out that, especially for solutions to pp-Poisson equations with homogeneous Dirichlet boundary conditions on bounded polygonal domains, the Besov regularity is significantly higher than the Sobolev regularity which justifies the use of adaptive algorithms. This type of results is obtained by combining local H\"older with global Sobolev estimates. In particular, we prove that intersections of locally weighted H\"older spaces and Sobolev spaces can be continuously embedded into the specific scale of Besov spaces we are interested in. The proof of this embedding result is based on wavelet characterizations of Besov spaces.Comment: 45 pages, 2 figure

    Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems

    Full text link
    In this work there is established an optimal existence and regularity theory for second order linear parabolic differential equations on a large class of noncompact Riemannian manifolds. Then it is shown that it provides a general unifying approach to problems with strong degeneracies in the interior or at the boundary.Comment: To appear in "Recent Developments of Mathematical Fluid Mechanics", Series: Advances in Mathematical Fluid Mechanics, Birkhaeuser-Verlag, Editors: G. P. Galdi, J. G. Heywood and R. Rannacher. Some misprints of the earlier version have been correcte

    Fractional-order operators: Boundary problems, heat equations

    Full text link
    The first half of this work gives a survey of the fractional Laplacian (and related operators), its restricted Dirichlet realization on a bounded domain, and its nonhomogeneous local boundary conditions, as treated by pseudodifferential methods. The second half takes up the associated heat equation with homogeneous Dirichlet condition. Here we recall recently shown sharp results on interior regularity and on LpL_p-estimates up to the boundary, as well as recent H\"older estimates. This is supplied with new higher regularity estimates in L2L_2-spaces using a technique of Lions and Magenes, and higher LpL_p-regularity estimates (with arbitrarily high H\"older estimates in the time-parameter) based on a general result of Amann. Moreover, it is shown that an improvement to spatial CC^\infty -regularity at the boundary is not in general possible.Comment: 29 pages, updated version, to appear in a Springer Proceedings in Mathematics and Statistics: "New Perspectives in Mathematical Analysis - Plenary Lectures, ISAAC 2017, Vaxjo Sweden

    Besov regularity for operator equations on patchwise smooth manifolds

    Full text link
    We study regularity properties of solutions to operator equations on patchwise smooth manifolds Ω\partial\Omega such as, e.g., boundaries of polyhedral domains ΩR3\Omega \subset \mathbb{R}^3. Using suitable biorthogonal wavelet bases Ψ\Psi, we introduce a new class of Besov-type spaces BΨ,qα(Lp(Ω))B_{\Psi,q}^\alpha(L_p(\partial \Omega)) of functions u ⁣:ΩCu\colon\partial\Omega\rightarrow\mathbb{C}. Special attention is paid on the rate of convergence for best nn-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on Ω\partial\Omega into BΨ,τα(Lτ(Ω))B_{\Psi,\tau}^\alpha(L_\tau(\partial \Omega)), 1/τ=α/2+1/21/\tau=\alpha/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double layer ansatz for Dirichlet problems for Laplace's equation in Ω\Omega.Comment: 42 pages, 3 figures, updated after peer review. Preprint: Bericht Mathematik Nr. 2013-03 des Fachbereichs Mathematik und Informatik, Universit\"at Marburg. To appear in J. Found. Comput. Mat

    Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains

    Full text link
    We use the scale of Besov spaces B^\alpha_{\tau,\tau}(O), \alpha>0, 1/\tau=\alpha/d+1/p, p fixed, to study the spatial regularity of the solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains O\subset R^d. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.Comment: 32 pages, 3 figure
    corecore