5,450 research outputs found

    D-SLATS: Distributed Simultaneous Localization and Time Synchronization

    Full text link
    Through the last decade, we have witnessed a surge of Internet of Things (IoT) devices, and with that a greater need to choreograph their actions across both time and space. Although these two problems, namely time synchronization and localization, share many aspects in common, they are traditionally treated separately or combined on centralized approaches that results in an ineffcient use of resources, or in solutions that are not scalable in terms of the number of IoT devices. Therefore, we propose D-SLATS, a framework comprised of three different and independent algorithms to jointly solve time synchronization and localization problems in a distributed fashion. The First two algorithms are based mainly on the distributed Extended Kalman Filter (EKF) whereas the third one uses optimization techniques. No fusion center is required, and the devices only communicate with their neighbors. The proposed methods are evaluated on custom Ultra-Wideband communication Testbed and a quadrotor, representing a network of both static and mobile nodes. Our algorithms achieve up to three microseconds time synchronization accuracy and 30 cm localization error

    Distributed localization of a RF target in NLOS environments

    Full text link
    We propose a novel distributed expectation maximization (EM) method for non-cooperative RF device localization using a wireless sensor network. We consider the scenario where few or no sensors receive line-of-sight signals from the target. In the case of non-line-of-sight signals, the signal path consists of a single reflection between the transmitter and receiver. Each sensor is able to measure the time difference of arrival of the target's signal with respect to a reference sensor, as well as the angle of arrival of the target's signal. We derive a distributed EM algorithm where each node makes use of its local information to compute summary statistics, and then shares these statistics with its neighbors to improve its estimate of the target localization. Since all the measurements need not be centralized at a single location, the spectrum usage can be significantly reduced. The distributed algorithm also allows for increased robustness of the sensor network in the case of node failures. We show that our distributed algorithm converges, and simulation results suggest that our method achieves an accuracy close to the centralized EM algorithm. We apply the distributed EM algorithm to a set of experimental measurements with a network of four nodes, which confirm that the algorithm is able to localize a RF target in a realistic non-line-of-sight scenario.Comment: 30 pages, 11 figure
    • …
    corecore