822 research outputs found

    Error Correcting Codes for Distributed Control

    Get PDF
    The problem of stabilizing an unstable plant over a noisy communication link is an increasingly important one that arises in applications of networked control systems. Although the work of Schulman and Sahai over the past two decades, and their development of the notions of "tree codes"\phantom{} and "anytime capacity", provides the theoretical framework for studying such problems, there has been scant practical progress in this area because explicit constructions of tree codes with efficient encoding and decoding did not exist. To stabilize an unstable plant driven by bounded noise over a noisy channel one needs real-time encoding and real-time decoding and a reliability which increases exponentially with decoding delay, which is what tree codes guarantee. We prove that linear tree codes occur with high probability and, for erasure channels, give an explicit construction with an expected decoding complexity that is constant per time instant. We give novel sufficient conditions on the rate and reliability required of the tree codes to stabilize vector plants and argue that they are asymptotically tight. This work takes an important step towards controlling plants over noisy channels, and we demonstrate the efficacy of the method through several examples.Comment: 39 page

    Tree Codes Improve Convergence Rate of Consensus Over Erasure Channels

    Get PDF
    We study the problem of achieving average consensus between a group of agents over a network with erasure links. In the context of consensus problems, the unreliability of communication links between nodes has been traditionally modeled by allowing the underlying graph to vary with time. In other words, depending on the realization of the link erasures, the underlying graph at each time instant is assumed to be a subgraph of the original graph. Implicit in this model is the assumption that the erasures are symmetric: if at time t the packet from node i to node j is dropped, the same is true for the packet transmitted from node j to node i. However, in practical wireless communication systems this assumption is unreasonable and, due to the lack of symmetry, standard averaging protocols cannot guarantee that the network will reach consensus to the true average. In this paper we explore the use of channel coding to improve the performance of consensus algorithms. For symmetric erasures, we show that, for certain ranges of the system parameters, repetition codes can speed up the convergence rate. For asymmetric erasures we show that tree codes (which have recently been designed for erasure channels) can be used to simulate the performance of the original "unerased" graph. Thus, unlike conventional consensus methods, we can guarantee convergence to the average in the asymmetric case. The price is a slowdown in the convergence rate, relative to the unerased network, which is still often faster than the convergence rate of conventional consensus algorithms over noisy links

    A Nonstochastic Information Theory for Communication and State Estimation

    Full text link
    In communications, unknown variables are usually modelled as random variables, and concepts such as independence, entropy and information are defined in terms of the underlying probability distributions. In contrast, control theory often treats uncertainties and disturbances as bounded unknowns having no statistical structure. The area of networked control combines both fields, raising the question of whether it is possible to construct meaningful analogues of stochastic concepts such as independence, Markovness, entropy and information without assuming a probability space. This paper introduces a framework for doing so, leading to the construction of a maximin information functional for nonstochastic variables. It is shown that the largest maximin information rate through a memoryless, error-prone channel in this framework coincides with the block-coding zero-error capacity of the channel. Maximin information is then used to derive tight conditions for uniformly estimating the state of a linear time-invariant system over such a channel, paralleling recent results of Matveev and Savkin

    Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems

    Full text link
    Stabilization of non-stationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in information theory and control theory literature since 1970s, with a renewed interest in the past decade. There have also been studies on non-causal and causal coding of unstable/non-stationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (non-stationary) possibly multi-dimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.Comment: To appear in IEEE Transactions on Information Theor

    Coded Kalman Filtering Over Gaussian Channels with Feedback

    Full text link
    This paper investigates the problem of zero-delay joint source-channel coding of a vector Gauss-Markov source over a multiple-input multiple-output (MIMO) additive white Gaussian noise (AWGN) channel with feedback. In contrast to the classical problem of causal estimation using noisy observations, we examine a system where the source can be encoded before transmission. An encoder, equipped with feedback of past channel outputs, observes the source state and encodes the information in a causal manner as inputs to the channel while adhering to a power constraint. The objective of the code is to estimate the source state with minimum mean square error at the infinite horizon. This work shows a fundamental theorem for two scenarios: for the transmission of an unstable vector Gauss-Markov source over either a multiple-input single-output (MISO) or a single-input multiple-output (SIMO) AWGN channel, finite estimation error is achievable if and only if the sum of logs of the unstable eigenvalues of the state gain matrix is less than the Shannon channel capacity. We prove these results by showing an optimal linear innovations encoder that can be applied to sources and channels of any dimension and analyzing it together with the corresponding Kalman filter decoder.Comment: Presented at 59th Allerton Conference on Communication, Control, and Computin
    • …
    corecore