44,993 research outputs found

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2w12w-1. When d2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2w1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2w12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2w12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2w12w-1 are also determined for all w6w\leq 6, except in two cases.Comment: 12 page

    Combinatorial limitations of average-radius list-decoding

    Full text link
    We study certain combinatorial aspects of list-decoding, motivated by the exponential gap between the known upper bound (of O(1/γ)O(1/\gamma)) and lower bound (of Ωp(log(1/γ))\Omega_p(\log (1/\gamma))) for the list-size needed to decode up to radius pp with rate γ\gamma away from capacity, i.e., 1-\h(p)-\gamma (here p(0,1/2)p\in (0,1/2) and γ>0\gamma > 0). Our main result is the following: We prove that in any binary code C{0,1}nC \subseteq \{0,1\}^n of rate 1-\h(p)-\gamma, there must exist a set LC\mathcal{L} \subset C of Ωp(1/γ)\Omega_p(1/\sqrt{\gamma}) codewords such that the average distance of the points in L\mathcal{L} from their centroid is at most pnpn. In other words, there must exist Ωp(1/γ)\Omega_p(1/\sqrt{\gamma}) codewords with low "average radius." The standard notion of list-decoding corresponds to working with the maximum distance of a collection of codewords from a center instead of average distance. The average-radius form is in itself quite natural and is implied by the classical Johnson bound. The remaining results concern the standard notion of list-decoding, and help clarify the combinatorial landscape of list-decoding: 1. We give a short simple proof, over all fixed alphabets, of the above-mentioned Ωp(log(γ))\Omega_p(\log (\gamma)) lower bound. Earlier, this bound followed from a complicated, more general result of Blinovsky. 2. We show that one {\em cannot} improve the Ωp(log(1/γ))\Omega_p(\log (1/\gamma)) lower bound via techniques based on identifying the zero-rate regime for list decoding of constant-weight codes. 3. We show a "reverse connection" showing that constant-weight codes for list decoding imply general codes for list decoding with higher rate. 4. We give simple second moment based proofs of tight (up to constant factors) lower bounds on the list-size needed for list decoding random codes and random linear codes from errors as well as erasures.Comment: 28 pages. Extended abstract in RANDOM 201
    corecore