2,502,090 research outputs found

    Program Synthesis and Linear Operator Semantics

    Full text link
    For deterministic and probabilistic programs we investigate the problem of program synthesis and program optimisation (with respect to non-functional properties) in the general setting of global optimisation. This approach is based on the representation of the semantics of programs and program fragments in terms of linear operators, i.e. as matrices. We exploit in particular the fact that we can automatically generate the representation of the semantics of elementary blocks. These can then can be used in order to compositionally assemble the semantics of a whole program, i.e. the generator of the corresponding Discrete Time Markov Chain (DTMC). We also utilise a generalised version of Abstract Interpretation suitable for this linear algebraic or functional analytical framework in order to formulate semantical constraints (invariants) and optimisation objectives (for example performance requirements).Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Piecewise linear actions and Zimmer's program

    Full text link
    We consider Zimmer's program of lattice actions on surfaces by PL homomorphisms. It is proved that when the surface is not the torus or Klein bottle the action of any finite-index subgroup of SL(n,Z), n>4, (more generally for any 2-big lattice), factors through a finite group action. The proof is based on an establishment of a PL version of Reeb-Thurston's stability

    ALPS: A Linear Program Solver

    Get PDF
    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program
    corecore