2,363 research outputs found

    Fundamental Limits of Distributed Caching in D2D Wireless Networks

    Full text link
    We consider a wireless Device-to-Device (D2D) network where communication is restricted to be single-hop, users make arbitrary requests from a finite library of possible files and user devices cache information in the form of linear combinations of packets from the files in the library (coded caching). We consider the combined effect of coding in the caching and delivery phases, achieving "coded multicast gain", and of spatial reuse due to local short-range D2D communication. Somewhat counterintuitively, we show that the coded multicast gain and the spatial reuse gain do not cumulate, in terms of the throughput scaling laws. In particular, the spatial reuse gain shown in our previous work on uncoded random caching and the coded multicast gain shown in this paper yield the same scaling laws behavior, but no further scaling law gain can be achieved by using both coded caching and D2D spatial reuse.Comment: 5 pages, 3 figures, submitted to ITW 201

    Fundamental Limits of Caching in Wireless D2D Networks

    Full text link
    We consider a wireless Device-to-Device (D2D) network where communication is restricted to be single-hop. Users make arbitrary requests from a finite library of files and have pre-cached information on their devices, subject to a per-node storage capacity constraint. A similar problem has already been considered in an ``infrastructure'' setting, where all users receive a common multicast (coded) message from a single omniscient server (e.g., a base station having all the files in the library) through a shared bottleneck link. In this work, we consider a D2D ``infrastructure-less'' version of the problem. We propose a caching strategy based on deterministic assignment of subpackets of the library files, and a coded delivery strategy where the users send linearly coded messages to each other in order to collectively satisfy their demands. We also consider a random caching strategy, which is more suitable to a fully decentralized implementation. Under certain conditions, both approaches can achieve the information theoretic outer bound within a constant multiplicative factor. In our previous work, we showed that a caching D2D wireless network with one-hop communication, random caching, and uncoded delivery, achieves the same throughput scaling law of the infrastructure-based coded multicasting scheme, in the regime of large number of users and files in the library. This shows that the spatial reuse gain of the D2D network is order-equivalent to the coded multicasting gain of single base station transmission. It is therefore natural to ask whether these two gains are cumulative, i.e.,if a D2D network with both local communication (spatial reuse) and coded multicasting can provide an improved scaling law. Somewhat counterintuitively, we show that these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information Theory, This is the extended version of the conference (ITW) paper arXiv:1304.585

    Caching and Coded Multicasting: Multiple Groupcast Index Coding

    Full text link
    The capacity of caching networks has received considerable attention in the past few years. A particularly studied setting is the case of a single server (e.g., a base station) and multiple users, each of which caches segments of files in a finite library. Each user requests one (whole) file in the library and the server sends a common coded multicast message to satisfy all users at once. The problem consists of finding the smallest possible codeword length to satisfy such requests. In this paper we consider the generalization to the case where each user places L≥1L \geq 1 requests. The obvious naive scheme consists of applying LL times the order-optimal scheme for a single request, obtaining a linear in LL scaling of the multicast codeword length. We propose a new achievable scheme based on multiple groupcast index coding that achieves a significant gain over the naive scheme. Furthermore, through an information theoretic converse we find that the proposed scheme is approximately optimal within a constant factor of (at most) 1818.Comment: 5 pages, 1 figure, to appear in GlobalSIP14, Dec. 201
    • …
    corecore