5,705 research outputs found

    Modulated linear dynamics of nanobeams accounting for higher gradient effects

    Get PDF
    We present some numerical results for the linear dynamics of nanobeams modulated by an axial force, basing on a recent proposal of literature that encompasses both the standard nonlocal elasticity, according to Eringen, and second-order strain elasticity. Three different possibilities for the elastic potential energy provide different responses that highlight the contributions of nonlocality and strain gradient, plus their combination. An axial force affects the linear stationary dynamics of such nanobeams, inducing suitable variation of the natural angular frequencies for benchmark cases, until static buckling occurs when the natural angular frequency vanishes. Effects of the various elastic potentials on this modulation are investigated and thoroughly commented

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    A tomographic approach to non-Markovian master equations

    Full text link
    We propose a procedure based on symplectic tomography for reconstructing the unknown parameters of a convolutionless non-Markovian Gaussian noisy evolution. Whenever the time-dependent master equation coefficients are given as a function of some unknown time-independent parameters, we show that these parameters can be reconstructed by means of a finite number of tomograms. Two different approaches towards reconstruction, integral and differential, are presented and applied to a benchmark model made of a harmonic oscillator coupled to a bosonic bath. For this model the number of tomograms needed to retrieve the unknown parameters is explicitly computed.Comment: 15 pages, 2 figure

    Well-posedness and Robust Preconditioners for the Discretized Fluid-Structure Interaction Systems

    Full text link
    In this paper we develop a family of preconditioners for the linear algebraic systems arising from the arbitrary Lagrangian-Eulerian discretization of some fluid-structure interaction models. After the time discretization, we formulate the fluid-structure interaction equations as saddle point problems and prove the uniform well-posedness. Then we discretize the space dimension by finite element methods and prove their uniform well-posedness by two different approaches under appropriate assumptions. The uniform well-posedness makes it possible to design robust preconditioners for the discretized fluid-structure interaction systems. Numerical examples are presented to show the robustness and efficiency of these preconditioners.Comment: 1. Added two preconditioners into the analysis and implementation 2. Rerun all the numerical tests 3. changed title, abstract and corrected lots of typos and inconsistencies 4. added reference

    On the convergence of Regge calculus to general relativity

    Get PDF
    Motivated by a recent study casting doubt on the correspondence between Regge calculus and general relativity in the continuum limit, we explore a mechanism by which the simplicial solutions can converge whilst the residual of the Regge equations evaluated on the continuum solutions does not. By directly constructing simplicial solutions for the Kasner cosmology we show that the oscillatory behaviour of the discrepancy between the Einstein and Regge solutions reconciles the apparent conflict between the results of Brewin and those of previous studies. We conclude that solutions of Regge calculus are, in general, expected to be second order accurate approximations to the corresponding continuum solutions.Comment: Updated to match published version. Details of numerical calculations added, several sections rewritten. 9 pages, 4 EPS figure

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
    corecore