12 research outputs found

    Retrospective Interference Alignment for the MIMO Interference Broadcast Channel

    Full text link
    The degrees of freedom (DoF) of the multiple-input multiple-output (MIMO) Interference Broadcast Channel (IBC) with 2 cells and 2 users per cell are investigated when only delayed channel state information is available at the transmitter side (delayed CSIT). Retrospective Interference Alignment has shown the benefits in terms of DoF of exploiting delayed CSIT for interference, broadcast and also for the IBC. However, previous works studying the IBC with delayed CSIT do not exploit the fact that the users of each cell are served by a common transmitter. This work presents a four-phase precoding strategy taking this into consideration. Assuming that transmitters and receivers are equipped with M,NM,N antennas, respectively, new DoF inner bounds are proposed, outperforming the existing ones for ρ=MN>2.6413\rho = \frac{M}{N} > 2.6413.Comment: 1 copyright page + 5 paper pages + 3 appendix pages, Submitted to IEEE ISIT 201

    Retrospective Interference Alignment for Two-Cell Uplink MIMO Cellular Networks with Delayed CSIT

    Full text link
    In this paper, we propose a new retrospective interference alignment for two-cell multiple-input multiple-output (MIMO) interfering multiple access channels (IMAC) with the delayed channel state information at the transmitters (CSIT). It is shown that having delayed CSIT can strictly increase the sum-DoF compared to the case of no CSIT. The key idea is to align multiple interfering signals from adjacent cells onto a small dimensional subspace over time by fully exploiting the previously received signals as side information with outdated CSIT in a distributed manner. Remarkably, we show that the retrospective interference alignment can achieve the optimal sum-DoF in the context of two-cell two-user scenario by providing a new outer bound.Comment: 7 pages, 2 figures, to appear in IEEE ICC 201
    corecore