1,016 research outputs found

    A Coordinate-Descent Algorithm for Tracking Solutions in Time-Varying Optimal Power Flows

    Full text link
    Consider a polynomial optimisation problem, whose instances vary continuously over time. We propose to use a coordinate-descent algorithm for solving such time-varying optimisation problems. In particular, we focus on relaxations of transmission-constrained problems in power systems. On the example of the alternating-current optimal power flows (ACOPF), we bound the difference between the current approximate optimal cost generated by our algorithm and the optimal cost for a relaxation using the most recent data from above by a function of the properties of the instance and the rate of change to the instance over time. We also bound the number of floating-point operations that need to be performed between two updates in order to guarantee the error is bounded from above by a given constant

    Primal-Dual Rates and Certificates

    Get PDF
    We propose an algorithm-independent framework to equip existing optimization methods with primal-dual certificates. Such certificates and corresponding rate of convergence guarantees are important for practitioners to diagnose progress, in particular in machine learning applications. We obtain new primal-dual convergence rates, e.g., for the Lasso as well as many L1, Elastic Net, group Lasso and TV-regularized problems. The theory applies to any norm-regularized generalized linear model. Our approach provides efficiently computable duality gaps which are globally defined, without modifying the original problems in the region of interest.Comment: appearing at ICML 2016 - Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016. JMLR: W&CP volume 4

    CoCoA: A General Framework for Communication-Efficient Distributed Optimization

    Get PDF
    The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets
    • …
    corecore