1,055 research outputs found

    Linear Convergence of Adaptively Iterative Thresholding Algorithms for Compressed Sensing

    Full text link
    This paper studies the convergence of the adaptively iterative thresholding (AIT) algorithm for compressed sensing. We first introduce a generalized restricted isometry property (gRIP). Then we prove that the AIT algorithm converges to the original sparse solution at a linear rate under a certain gRIP condition in the noise free case. While in the noisy case, its convergence rate is also linear until attaining a certain error bound. Moreover, as by-products, we also provide some sufficient conditions for the convergence of the AIT algorithm based on the two well-known properties, i.e., the coherence property and the restricted isometry property (RIP), respectively. It should be pointed out that such two properties are special cases of gRIP. The solid improvements on the theoretical results are demonstrated and compared with the known results. Finally, we provide a series of simulations to verify the correctness of the theoretical assertions as well as the effectiveness of the AIT algorithm.Comment: 15 pages, 5 figure

    Sparse Solution of Underdetermined Linear Equations via Adaptively Iterative Thresholding

    Full text link
    Finding the sparset solution of an underdetermined system of linear equations y=Axy=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as AA satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper.Comment: 33 pages, 1 figur
    • …
    corecore