8 research outputs found

    Linear Block Coding for Efficient Beam Discovery in Millimeter Wave Communication Networks

    Full text link
    The surge in mobile broadband data demands is expected to surpass the available spectrum capacity below 6 GHz. This expectation has prompted the exploration of millimeter wave (mm-wave) frequency bands as a candidate technology for next generation wireless networks. However, numerous challenges to deploying mm-wave communication systems, including channel estimation, need to be met before practical deployments are possible. This work addresses the mm-wave channel estimation problem and treats it as a beam discovery problem in which locating beams with strong path reflectors is analogous to locating errors in linear block codes. We show that a significantly small number of measurements (compared to the original dimensions of the channel matrix) is sufficient to reliably estimate the channel. We also show that this can be achieved using a simple and energy-efficient transceiver architecture.Comment: To appear in the proceedings of IEEE INFOCOM '1

    On Optimal Multi-user Beam Alignment in Millimeter Wave Wireless Systems

    Full text link
    Directional transmission patterns (a.k.a. narrow beams) are the key to wireless communications in millimeter wave (mmWave) frequency bands which suffer from high path loss and severe shadowing. In addition, the propagation channel in mmWave frequencies incorporates only a few number of spatial clusters requiring a procedure to align the corresponding narrow beams with the angle of departure (AoD) of the channel clusters. The objective of this procedure, called beam alignment (BA) is to increase the beamforming gain for subsequent data communication. Several prior studies consider optimizing BA procedure to achieve various objectives such as reducing the BA overhead, increasing throughput, and reducing power consumption. While these studies mostly provide optimized BA schemes for scenarios with a single active user, there are often multiple active users in practical networks. Consequently, it is more efficient in terms of BA overhead and delay to design multi-user BA schemes which can perform beam management for multiple users collectively. This paper considers a class of multi-user BA schemes where the base station performs a one shot scan of the angular domain to simultaneously localize multiple users. The objective is to minimize the average of expected width of remaining uncertainty regions (UR) on the AoDs after receiving users' feedbacks. Fundamental bounds on the optimal performance are analyzed using information theoretic tools. Furthermore, a beam design optimization problem is formulated and a practical BA scheme, which provides significant gains compared to the beam sweeping used in 5G standard is proposed

    Low-Complexity Multi-User MIMO Algorithms for mmWave WLANs

    Get PDF
    Very high throughput and high-efficiency wireless local area networks (WLANs) have become essential for today's significant global Internet traffic and the expected significant global increase of public WiFi hotspots. Total Internet traffic is predicted to expand 3.7-fold from 2017 to 2022. In 2017, 53% of overall Internet traffic used by WiFi networks, and that number is expected to increase to 56.8% by 2022. Furthermore, 80% of overall Internet traffic is expected to be video traffic by 2022, up from 70% in 2017. WiFi networks are also expected to move towards denser deployment scenarios, such as stadiums, large office buildings, and airports, with very high data rate applications, such as ultra-high definition video wireless streaming. Thus, in order to meet the predicted growth of wireless traffic and the number of WiFi networks in the world, an efficient Internet access solution is required for the current IEEE 802.11 standards. Millimeter wave (mmWave) communication technology is expected to play a crucial role in future wireless networks with large user populations because of the large spectrum band it can provide. To further improve spectrum efficiency over mmWave bands in WLANs with large numbers of users, the IEEE 802.11ay standard was developed from the traditional IEEE 802.11ad standard, aiming to support multi-user MIMO. Propagation challenges associated with mmWave bands necessitate the use of analog beamforming (BF) technologies that employ directional transmissions to determine the optimal sector beam between a transmitter and a receiver. However, the multi-user MIMO is not exploited, since analog BF is limited to a single-user, single-transmission. The computational complexity of achieving traditional multi-user MIMO BF methods, such as full digital BF, in the mmWave systems becomes significant due to the hardware constraints. Our research focuses on how to effectively and efficiently realize multi-user MIMO transmission to improve spectrum efficiency over the IEEE 802.11ay mmWave band system while also resolving the computational complexity challenges for achieving a multi-user MIMO in mmWave systems. This thesis focuses on MAC protocol algorithms and analysis of the IEEE 802.11ay mmWave WLANs to provide multi-user MIMO support in various scenarios to improve the spectrum efficiency and system throughput. Specifically, from a downlink single-hop scenario perspective, a VG algorithm is proposed to schedule simultaneous downlink transmission links while mitigating the multi-user interference with no additional computational complexity. From a downlink multi-hop scenario perspective, a low-complexity MHVG algorithm is conducted to realize simultaneous transmissions and improve the network performance by taking advantage of the spatial reuse in a dense network. The proposed MHVG algorithm permits simultaneous links scheduling and mitigates both the multi-user interference and co-channel interference based only on analog BF information, without the necessity for feedback overhead, such as channel state information (CSI). From an uplink scenario perspective, a low-complexity user selection algorithm, HBF-VG, incorporates user selection with the HBF algorithm to achieve simultaneous uplink transmissions for IEEE 802.11ay mmWave WLANs. With the HBF-VG algorithm, the users can be selected based on an orthogonality criterion instead of collecting CSI from all potential users. We optimize the digital BF to mitigate the residual interference among selected users. Extensive analytical and simulation evaluations are provided to validate the performance of the proposed algorithms with respect to average throughput per time slot, average network throughput, average sum-rate, energy efficiency, signal-to-interference-plus-noise ratio (SINR), and spatial multiplexing gain

    Design and Analysis of Beamforming in mmWave Networks

    Get PDF
    To support increasing data-intensive wireless applications, millimeter-wave (mmWave) communication emerges as the most promising wireless technology that offers high data rate connections by exploiting a large swath of spectrum. Beamforming (BF) that focuses the radio frequency power in a narrow direction, is adopted in mmWave communication to overcome the hostile path loss. However, the distinct high directionality feature caused by BF poses new challenges: 1) Beam alignment (BA) latency which is a processing delay that both the transmitter and the receiver align their beams to establish a reliable link. Existing BA methods incur significant BA latency on the order of seconds for a large number of beams; 2) Medium access control (MAC) degradation. To coordinate the BF training for multiple users, 802.11ad standard specifies a new MAC protocol in which all the users contend for BF training resources in a distributed manner. Due to the “deafness” problem caused by directional transmission, i.e., a user may not sense the transmission of other users, severe collisions occur in high user density scenarios, which significantly degrades the MAC performance; and 3) Backhaul congestion. All the base stations (BSs) in mmWave dense networks are connected to backbone network via backhaul links, in order to access remote content servers. Although BF technology can increase the data rate of the fronthaul links between users and the BS, the congested backhaul link becomes a new bottleneck, since deploying unconstrained wired backhaul links in mmWave dense networks is infeasible due to high costs. In this dissertation, we address each challenge respectively by 1) proposing an efficient BA algorithm; 2) evaluating and enhancing the 802.11ad MAC performance; and 3) designing an effective backhaul alleviation scheme. Firstly, we propose an efficient BA algorithm to reduce processing latency. The existing BA methods search the entire beam space to identify the optimal transmit-receive beam pair, which leads to significant latency. Thus, an efficient BA algorithm without search- ing the entire beam space is desired. Accordingly, a learning-based BA algorithm, namely hierarchical BA (HBA) algorithm is proposed which takes advantage of the correlation structure among beams such that the information from nearby beams is extracted to iden- tify the optimal beam, instead of searching the entire beam space. Furthermore, the prior knowledge on the channel fluctuation is incorporated in the proposed algorithm to further accelerate the BA process. Theoretical analysis indicates that the proposed algorithm can effectively identify the optimal beam pair with low latency. Secondly, we analyze and enhance the performance of BF training MAC (BFT-MAC) in 802.11ad. Existing analytical models for traditional omni-directional systems are un- suitable for BFT-MAC due to the distinct directional transmission feature in mmWave networks. Therefore, a thorough theoretical framework on BFT-MAC is necessary and significant. To this end, we develop a simple yet accurate analytical model to evaluate the performance of BFT-MAC. Based on our analytical model, we derive the closed-form expressions of average successful BF training probability, the normalized throughput, and the BF training latency. Asymptotic analysis indicates that the maximum normalized throughput of BFT-MAC is barely 1/e. Then, we propose an enhancement scheme which adaptively adjusts MAC parameters in tune with user density. The proposed scheme can effectively improve MAC performance in high user density scenarios. Thirdly, to alleviate backhaul burden in mmWave dense networks, edge caching that proactively caches popular contents at the edge of mmWave networks, is employed. Since the cache resource of an individual BS can only store limited contents, this significantly throttles the caching performance. We propose a cooperative edge caching policy, namely device-to-device assisted cooperative edge caching (DCEC), to enlarge cached contents by jointly utilizing cache resources of adjacent users and BSs in proximity. In addition, the proposed caching policy brings an extra advantage that the high directional transmission in mmWave communications can naturally tackle the interference issue in the cooperative caching policy. We theoretically analyze the performance of DCEC scheme taking the network density, the practical directional antenna model and the stochastic information of network topology into consideration. Theoretical results demonstrate that the proposed policy can achieve higher performance in offloading the backhaul traffic and reducing the content retrieval delay, compared with the benchmark policy. The research outcomes from the dissertation can provide insightful lights on under- standing the fundamental performance of the mmWave networks from the perspectives of BA, MAC, and backhaul. The schemes developed in the dissertation should offer practical and efficient solutions to build and optimize the mmWave networks
    corecore