5,330 research outputs found

    Simple and explicit bounds for multi-server queues with 1/(1βˆ’Ο)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11βˆ’Ο\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let ΞΌA\mu_A (respectively ΞΌS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AΞΌA)r],E[(SΞΌS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11βˆ’Ο\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11βˆ’Ο\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11βˆ’Ο\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1βˆ’Ο)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations

    Many-server queues with customer abandonment: numerical analysis of their diffusion models

    Full text link
    We use multidimensional diffusion processes to approximate the dynamics of a queue served by many parallel servers. The queue is served in the first-in-first-out (FIFO) order and the customers waiting in queue may abandon the system without service. Two diffusion models are proposed in this paper. They differ in how the patience time distribution is built into them. The first diffusion model uses the patience time density at zero and the second one uses the entire patience time distribution. To analyze these diffusion models, we develop a numerical algorithm for computing the stationary distribution of such a diffusion process. A crucial part of the algorithm is to choose an appropriate reference density. Using a conjecture on the tail behavior of a limit queue length process, we propose a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments also show that the diffusion models are good approximations for many-server queues, sometimes for queues with as few as twenty servers

    Β© 2012 INFORMS Overflow Networks: Approximations and

    Get PDF
    Motivated by call center cosourcing problems, we consider a service network operated under an overflow mechanism. Calls are first routed to an in-house (or dedicated) service station that has a finite waiting room. If the waiting room is full, the call is overflowed to an outside provider (an overflow station) that might also be serving overflows from other stations. We establish approximations for overflow networks with many servers under a resource-pooling assumption that stipulates, in our context, that the fraction of overflowed calls is nonnegligible. Our two main results are (i) an approximation for the overflow processes via limit theorems and (ii) asymptotic independence between each of the in-house stations and the overflow station. In particular, we show that, as the system becomes large, the dependency between each in-house station and the overflow station becomes negligible. Independence between stations in overflow networks is assumed in the literature on call centers, and we provide a rigorous support for those useful heuristics. Subject classifications: overflow networks; cosourcing; heavy-traffic approximations; separation of time scales
    • …
    corecore