4 research outputs found

    Limited receptive area neural classifier for recognition of swallowing sounds using short-time Fourier transform

    No full text
    In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and short-time Fourier transform (STFT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where spectrograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach. ©2007 IEEE

    Cervical Auscultation for the Identification of Swallowing Difficulties

    Get PDF
    Swallowing difficulties, commonly referred to as dysphagia, affect thousands of Americans every year. They have a multitude of causes, but in general they are known to increase the risk of aspiration when swallowing in addition to other physiological effects. Cervical auscultation has been recently applied to detect such difficulties non-invasively and various techniques for analysis and processing of the recorded signals have been proposed. We attempted to further this research in three key areas. First, we characterized swallows with regards to a multitude of time, frequency, and time-frequency features while paying special attention to the differences between swallows from healthy adults and safe dysphagic swallows as well as safe and unsafe dysphagic swallows. Second, we attempted to utilize deep belief networks in order to classify these states automatically and without the aid of a concurrent videofluoroscopic examination. Finally, we sought to improve some of the signal processing techniques used in this field. We both implemented the DBSCAN algorithm to better segment our physiological signals as well as applied the matched complex wavelet transform to cervical auscultation data in order to improve its quality for mathematical analysis
    corecore