4,043 research outputs found

    Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and Challenges

    Full text link
    Semantic segmentation was seen as a challenging computer vision problem few years ago. Due to recent advancements in deep learning, relatively accurate solutions are now possible for its use in automated driving. In this paper, the semantic segmentation problem is explored from the perspective of automated driving. Most of the current semantic segmentation algorithms are designed for generic images and do not incorporate prior structure and end goal for automated driving. First, the paper begins with a generic taxonomic survey of semantic segmentation algorithms and then discusses how it fits in the context of automated driving. Second, the particular challenges of deploying it into a safety system which needs high level of accuracy and robustness are listed. Third, different alternatives instead of using an independent semantic segmentation module are explored. Finally, an empirical evaluation of various semantic segmentation architectures was performed on CamVid dataset in terms of accuracy and speed. This paper is a preliminary shorter version of a more detailed survey which is work in progress.Comment: To appear in IEEE ITSC 201

    Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review

    Full text link
    Recently, the advancement of deep learning in discriminative feature learning from 3D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3D point clouds is a challenging and tedious task. In this paper, we provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving such as segmentation, detection, and classification. Although several published research papers focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on deep learning applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this paper is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3D deep architectures, the remarkable deep learning applications in 3D semantic segmentation, object detection, and classification; specific datasets, evaluation metrics, and the state of the art performance. Finally, we conclude the remaining challenges and future researches.Comment: 21 pages, submitted to IEEE Transactions on Neural Networks and Learning System

    DSNet for Real-Time Driving Scene Semantic Segmentation

    Full text link
    We focus on the very challenging task of semantic segmentation for autonomous driving system. It must deliver decent semantic segmentation result for traffic critical objects real-time. In this paper, we propose a very efficient yet powerful deep neural network for driving scene semantic segmentation termed as Driving Segmentation Network (DSNet). DSNet achieves state-of-the-art balance between accuracy and inference speed through efficient units and architecture design inspired by ShuffleNet V2 and ENet. More importantly, DSNet highlights classes most critical with driving decision making through our novel Driving Importance-weighted Loss. We evaluate DSNet on Cityscapes dataset, our DSNet achieves 71.8% mean Intersection-over-Union (IoU) on validation set and 69.3% on test set. Class-wise IoU scores show that Driving Importance-weighted Loss could improve most driving critical classes by a large margin. Compared with ENet, DSNet is 18.9% more accurate and 1.1+ times faster which implies great potential for autonomous driving application.Comment: We have discovered some reported numbers unreproducible, and decided to redesign the methods, and rewrite most of the pape

    A Review on Deep Learning Techniques Applied to Semantic Segmentation

    Full text link
    Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers. Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even virtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw our own conclusions about the state of the art of semantic segmentation using deep learning techniques.Comment: Submitted to TPAMI on Apr. 22, 201

    DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

    Full text link
    This paper introduces an extremely efficient CNN architecture named DFANet for semantic segmentation under resource constraints. Our proposed network starts from a single lightweight backbone and aggregates discriminative features through sub-network and sub-stage cascade respectively. Based on the multi-scale feature propagation, DFANet substantially reduces the number of parameters, but still obtains sufficient receptive field and enhances the model learning ability, which strikes a balance between the speed and segmentation performance. Experiments on Cityscapes and CamVid datasets demonstrate the superior performance of DFANet with 8×\times less FLOPs and 2×\times faster than the existing state-of-the-art real-time semantic segmentation methods while providing comparable accuracy. Specifically, it achieves 70.3\% Mean IOU on the Cityscapes test dataset with only 1.7 GFLOPs and a speed of 160 FPS on one NVIDIA Titan X card, and 71.3\% Mean IOU with 3.4 GFLOPs while inferring on a higher resolution image

    Light-Weight RefineNet for Real-Time Semantic Segmentation

    Full text link
    We consider an important task of effective and efficient semantic image segmentation. In particular, we adapt a powerful semantic segmentation architecture, called RefineNet, into the more compact one, suitable even for tasks requiring real-time performance on high-resolution inputs. To this end, we identify computationally expensive blocks in the original setup, and propose two modifications aimed to decrease the number of parameters and floating point operations. By doing that, we achieve more than twofold model reduction, while keeping the performance levels almost intact. Our fastest model undergoes a significant speed-up boost from 20 FPS to 55 FPS on a generic GPU card on 512x512 inputs with solid 81.1% mean iou performance on the test set of PASCAL VOC, while our slowest model with 32 FPS (from original 17 FPS) shows 82.7% mean iou on the same dataset. Alternatively, we showcase that our approach is easily mixable with light-weight classification networks: we attain 79.2% mean iou on PASCAL VOC using a model that contains only 3.3M parameters and performs only 9.3B floating point operations.Comment: Models are available here: https://github.com/drsleep/light-weight-refinenet, BMVC 201

    Efficient Road Lane Marking Detection with Deep Learning

    Full text link
    Lane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using a deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-order polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.Comment: Accepted at International Conference on Digital Signal Processing (DSP) 201

    RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

    Full text link
    We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.Comment: CVPR 2020 Oral. Code and data are available at: https://github.com/QingyongHu/RandLA-Ne

    ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

    Full text link
    The ability to perform pixel-wise semantic segmentation in real-time is of paramount importance in mobile applications. Recent deep neural networks aimed at this task have the disadvantage of requiring a large number of floating point operations and have long run-times that hinder their usability. In this paper, we propose a novel deep neural network architecture named ENet (efficient neural network), created specifically for tasks requiring low latency operation. ENet is up to 18×\times faster, requires 75×\times less FLOPs, has 79×\times less parameters, and provides similar or better accuracy to existing models. We have tested it on CamVid, Cityscapes and SUN datasets and report on comparisons with existing state-of-the-art methods, and the trade-offs between accuracy and processing time of a network. We present performance measurements of the proposed architecture on embedded systems and suggest possible software improvements that could make ENet even faster

    CGNet: A Light-weight Context Guided Network for Semantic Segmentation

    Full text link
    The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore the inherent characteristic of semantic segmentation. To tackle this problem, we propose a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation. We first propose the Context Guided (CG) block, which learns the joint feature of both local feature and surrounding context, and further improves the joint feature with the global context. Based on the CG block, we develop CGNet which captures contextual information in all stages of the network and is specially tailored for increasing segmentation accuracy. CGNet is also elaborately designed to reduce the number of parameters and save memory footprint. Under an equivalent number of parameters, the proposed CGNet significantly outperforms existing segmentation networks. Extensive experiments on Cityscapes and CamVid datasets verify the effectiveness of the proposed approach. Specifically, without any post-processing and multi-scale testing, the proposed CGNet achieves 64.8% mean IoU on Cityscapes with less than 0.5 M parameters. The source code for the complete system can be found at https://github.com/wutianyiRosun/CGNet.Comment: Code: https://github.com/wutianyiRosun/CGNe
    • …
    corecore