1,172 research outputs found

    Arithmetic on a Distributed-Memory Quantum Multicomputer

    Full text link
    We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through ``teleported gates'' on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently.Comment: 24 pages, 10 figures, ACM transactions format. Extended version of Int. Symp. on Comp. Architecture (ISCA) paper; v2, correct one circuit error, numerous small changes for clarity, add reference

    MARVELO: Wireless Virtual Network Embedding for Overlay Graphs with Loops

    Full text link
    When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.Comment: 6 page

    Applicability and Challenges of Deep Reinforcement Learning for Satellite Frequency Plan Design

    Full text link
    The study and benchmarking of Deep Reinforcement Learning (DRL) models has become a trend in many industries, including aerospace engineering and communications. Recent studies in these fields propose these kinds of models to address certain complex real-time decision-making problems in which classic approaches do not meet time requirements or fail to obtain optimal solutions. While the good performance of DRL models has been proved for specific use cases or scenarios, most studies do not discuss the compromises and generalizability of such models during real operations. In this paper we explore the tradeoffs of different elements of DRL models and how they might impact the final performance. To that end, we choose the Frequency Plan Design (FPD) problem in the context of multibeam satellite constellations as our use case and propose a DRL model to address it. We identify 6 different core elements that have a major effect in its performance: the policy, the policy optimizer, the state, action, and reward representations, and the training environment. We analyze different alternatives for each of these elements and characterize their effect. We also use multiple environments to account for different scenarios in which we vary the dimensionality or make the environment nonstationary. Our findings show that DRL is a potential method to address the FPD problem in real operations, especially because of its speed in decision-making. However, no single DRL model is able to outperform the rest in all scenarios, and the best approach for each of the 6 core elements depends on the features of the operation environment. While we agree on the potential of DRL to solve future complex problems in the aerospace industry, we also reflect on the importance of designing appropriate models and training procedures, understanding the applicability of such models, and reporting the main performance tradeoffs

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    Deep Learning Hydrodynamic Forecasting for Flooded Region Assessment in Near-Real-Time (DL Hydro-FRAN)

    Full text link
    Hydrodynamic flood modeling improves hydrologic and hydraulic prediction of storm events. However, the computationally intensive numerical solutions required for high-resolution hydrodynamics have historically prevented their implementation in near-real-time flood forecasting. This study examines whether several Deep Neural Network (DNN) architectures are suitable for optimizing hydrodynamic flood models. Several pluvial flooding events were simulated in a low-relief high-resolution urban environment using a 2D HEC-RAS hydrodynamic model. These simulations were assembled into a training set for the DNNs, which were then used to forecast flooding depths and velocities. The DNNs' forecasts were compared to the hydrodynamic flood models, and showed good agreement, with a median RMSE of around 2 mm for cell flooding depths in the study area. The DNNs also improved forecast computation time significantly, with the DNNs providing forecasts between 34.2 and 72.4 times faster than conventional hydrodynamic models. The study area showed little change between HEC-RAS' Full Momentum Equations and Diffusion Equations, however, important numerical stability considerations were discovered that impact equation selection and DNN architecture configuration. Overall, the results from this study show that DNNs can greatly optimize hydrodynamic flood modeling, and enable near-real-time hydrodynamic flood forecasting.Comment: 21 pages, 8 figure
    • …
    corecore