3 research outputs found

    Limitations of Pinned AUC for Measuring Unintended Bias

    Full text link
    This report examines the Pinned AUC metric introduced and highlights some of its limitations. Pinned AUC provides a threshold-agnostic measure of unintended bias in a classification model, inspired by the ROC-AUC metric. However, as we highlight in this report, there are ways that the metric can obscure different kinds of unintended biases when the underlying class distributions on which bias is being measured are not carefully controlled

    Debiasing Personal Identities in Toxicity Classification

    Full text link
    As Machine Learning models continue to be relied upon for making automated decisions, the issue of model bias becomes more and more prevalent. In this paper, we approach training a text classifica-tion model and optimize on bias minimization by measuring not only the models performance on our dataset as a whole, but also how it performs across different subgroups. This requires measuring per-formance independently for different demographic subgroups and measuring bias by comparing them to results from the rest of our data. We show how unintended bias can be detected using these metrics and how removing bias from a dataset completely can result in worse results

    WILDS: A Benchmark of in-the-Wild Distribution Shifts

    Full text link
    Distribution shifts -- where the training distribution differs from the test distribution -- can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild. Despite their ubiquity in the real-world deployments, these distribution shifts are under-represented in the datasets widely used in the ML community today. To address this gap, we present WILDS, a curated benchmark of 10 datasets reflecting a diverse range of distribution shifts that naturally arise in real-world applications, such as shifts across hospitals for tumor identification; across camera traps for wildlife monitoring; and across time and location in satellite imaging and poverty mapping. On each dataset, we show that standard training yields substantially lower out-of-distribution than in-distribution performance. This gap remains even with models trained by existing methods for tackling distribution shifts, underscoring the need for new methods for training models that are more robust to the types of distribution shifts that arise in practice. To facilitate method development, we provide an open-source package that automates dataset loading, contains default model architectures and hyperparameters, and standardizes evaluations. Code and leaderboards are available at https://wilds.stanford.edu
    corecore