5,692,843 research outputs found
Property Tax Limitations
This report discusses property tax limitations in the U.S. and highlights limitations imposed in Georgia. FRC Report 17
Inherent Limitations of Hybrid Transactional Memory
Several Hybrid Transactional Memory (HyTM) schemes have recently been
proposed to complement the fast, but best-effort, nature of Hardware
Transactional Memory (HTM) with a slow, reliable software backup. However, the
fundamental limitations of building a HyTM with nontrivial concurrency between
hardware and software transactions are still not well understood.
In this paper, we propose a general model for HyTM implementations, which
captures the ability of hardware transactions to buffer memory accesses, and
allows us to formally quantify and analyze the amount of overhead
(instrumentation) of a HyTM scheme. We prove the following: (1) it is
impossible to build a strictly serializable HyTM implementation that has both
uninstrumented reads and writes, even for weak progress guarantees, and (2)
under reasonable assumptions, in any opaque progressive HyTM, a hardware
transaction must incur instrumentation costs linear in the size of its data
set. We further provide two upper bound implementations whose instrumentation
costs are optimal with respect to their progress guarantees. In sum, this paper
captures for the first time an inherent trade-off between the degree of
concurrency a HyTM provides between hardware and software transactions, and the
amount of instrumentation overhead the implementation must incur
The Limitations of Optimization from Samples
In this paper we consider the following question: can we optimize objective
functions from the training data we use to learn them? We formalize this
question through a novel framework we call optimization from samples (OPS). In
OPS, we are given sampled values of a function drawn from some distribution and
the objective is to optimize the function under some constraint.
While there are interesting classes of functions that can be optimized from
samples, our main result is an impossibility. We show that there are classes of
functions which are statistically learnable and optimizable, but for which no
reasonable approximation for optimization from samples is achievable. In
particular, our main result shows that there is no constant factor
approximation for maximizing coverage functions under a cardinality constraint
using polynomially-many samples drawn from any distribution.
We also show tight approximation guarantees for maximization under a
cardinality constraint of several interesting classes of functions including
unit-demand, additive, and general monotone submodular functions, as well as a
constant factor approximation for monotone submodular functions with bounded
curvature
- …
