4 research outputs found

    Sub-sampling and other considerations for efficient risk estimation in large portfolios

    Full text link
    Computing risk measures of a financial portfolio comprising thousands of options is a challenging problem because (a) it involves a nested expectation requiring multiple evaluations of the loss of the financial portfolio for different risk scenarios and (b) evaluating the loss of the portfolio is expensive and the cost increases with its size. In this work, we look at applying Multilevel Monte Carlo (MLMC) with adaptive inner sampling to this problem and discuss several practical considerations. In particular, we discuss a sub-sampling strategy that results in a method whose computational complexity does not increase with the size of the portfolio. We also discuss several control variates that significantly improve the efficiency of MLMC in our setting

    Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing

    Full text link
    In this paper, we propose and analyze a novel combination of multilevel Richardson-Romberg (ML2R) and importance sampling algorithm, with the aim of reducing the overall computational time, while achieving desired root-mean-squared error while pricing. We develop an idea to construct the Monte-Carlo estimator that deals with the parametric change of measure. We rely on the Robbins-Monro algorithm with projection, in order to approximate optimal change of measure parameter, for various levels of resolution in our multilevel algorithm. Furthermore, we propose incorporating discretization schemes with higher-order strong convergence, in order to simulate the underlying stochastic differential equations (SDEs) thereby achieving better accuracy. In order to do so, we study the Central Limit Theorem for the general multilevel algorithm. Further, we study the asymptotic behavior of our estimator, thereby proving the Strong Law of Large Numbers. Finally, we present numerical results to substantiate the efficacy of our developed algorithm
    corecore