3,073 research outputs found

    Limit theorems for quantum walks with memory

    Full text link
    Recently Mc Gettrick [1] introduced and studied a discrete-time 2-state quantum walk (QW) with a memory in one dimension. He gave an expression for the amplitude of the QW by path counting method. Moreover he showed that the return probability of the walk is more than 1/2 for any even time. In this paper, we compute the stationary distribution by considering the walk as a 4-state QW without memory. Our result is consistent with his claim. In addition, we obtain the weak limit theorem of the rescaled QW. This behavior is striking different from the corresponding classical random walk and the usual 2-state QW without memory as his numerical simulations suggested.Comment: Quantum Information and Computation, Vol.10, No.11&12, pp.1004-1017 (2010

    Probability distributions and weak limit theorems of quaternionic quantum walks in one dimension

    Get PDF
    The discrete-time quantum walk (QW) is determined by a unitary matrix whose component is complex number. Konno (2015) extended the QW to a walk whose component is quaternion.We call this model quaternionic quantum walk (QQW). The probability distribution of a class of QQWs is the same as that of the QW. On the other hand, a numerical simulation suggests that the probability distribution of a QQW is different from the QW. In this paper, we clarify the difference between the QQW and the QW by weak limit theorems for a class of QQWs.Comment: 11 pages, 2 figures, Interdisciplinary Information Sciences (in press

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Limit theorems for a localization model of 2-state quantum walks

    Full text link
    We consider 2-state quantum walks (QWs) on the line, which are defined by two matrices. One of the matrices operates the walk at only half-time. In the usual QWs, localization does not occur at all. However, our walk can be localized around the origin. In this paper, we present two limit theorems, that is, one is a stationary distribution and the other is a convergence theorem in distribution.Comment: International Journal of Quantum Information, Vol.9, No.3, pp.863-874 (2011
    corecore