2,325 research outputs found

    Relaxing Fundamental Assumptions in Iterative Learning Control

    Full text link
    Iterative learning control (ILC) is perhaps best decribed as an open loop feedforward control technique where the feedforward signal is learned through repetition of a single task. As the name suggests, given a dynamic system operating on a finite time horizon with the same desired trajectory, ILC aims to iteratively construct the inverse image (or its approximation) of the desired trajectory to improve transient tracking. In the literature, ILC is often interpreted as feedback control in the iteration domain due to the fact that learning controllers use information from past trials to drive the tracking error towards zero. However, despite the significant body of literature and powerful features, ILC is yet to reach widespread adoption by the control community, due to several assumptions that restrict its generality when compared to feedback control. In this dissertation, we relax some of these assumptions, mainly the fundamental invariance assumption, and move from the idea of learning through repetition to two dimensional systems, specifically repetitive processes, that appear in the modeling of engineering applications such as additive manufacturing, and sketch out future research directions for increased practicality: We develop an L1 adaptive feedback control based ILC architecture for increased robustness, fast convergence, and high performance under time varying uncertainties and disturbances. Simulation studies of the behavior of this combined L1-ILC scheme under iteration varying uncertainties lead us to the robust stability analysis of iteration varying systems, where we show that these systems are guaranteed to be stable when the ILC update laws are designed to be robust, which can be done using existing methods from the literature. As a next step to the signal space approach adopted in the analysis of iteration varying systems, we shift the focus of our work to repetitive processes, and show that the exponential stability of a nonlinear repetitive system is equivalent to that of its linearization, and consequently uniform stability of the corresponding state space matrix.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133232/1/altin_1.pd

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Centralized and distributed online learning for sparse time-varying optimization

    Get PDF
    The development of online algorithms to track time-varying systems has drawn a lot of attention in the last years, in particular in the framework of online convex optimization. Meanwhile, sparse time-varying optimization has emerged as a powerful tool to deal with widespread applications, ranging from dynamic compressed sensing to parsimonious system identification. In most of the literature on sparse time-varying problems, some prior information on the system's evolution is assumed to be available. In contrast, in this paper, we propose an online learning approach, which does not employ a given model and is suitable for adversarial frameworks. Specifically, we develop centralized and distributed algorithms, and we theoretically analyze them in terms of dynamic regret, in an online learning perspective. Further, we propose numerical experiments that illustrate their practical effectiveness

    Impulse Control in Finance: Numerical Methods and Viscosity Solutions

    Get PDF
    The goal of this thesis is to provide efficient and provably convergent numerical methods for solving partial differential equations (PDEs) coming from impulse control problems motivated by finance. Impulses, which are controlled jumps in a stochastic process, are used to model realistic features in financial problems which cannot be captured by ordinary stochastic controls. The dynamic programming equations associated with impulse control problems are Hamilton-Jacobi-Bellman quasi-variational inequalities (HJBQVIs) Other than in certain special cases, the numerical schemes that come from the discretization of HJBQVIs take the form of complicated nonlinear matrix equations also known as Bellman problems. We prove that a policy iteration algorithm can be used to compute their solutions. In order to do so, we employ the theory of weakly chained diagonally dominant (w.c.d.d.) matrices. As a byproduct of our analysis, we obtain some new results regarding a particular family of Markov decision processes which can be thought of as impulse control problems on a discrete state space and the relationship between w.c.d.d. matrices and M-matrices. Since HJBQVIs are nonlocal PDEs, we are unable to directly use the seminal result of Barles and Souganidis (concerning the convergence of monotone, stable, and consistent numerical schemes to the viscosity solution) to prove the convergence of our schemes. We address this issue by extending the work of Barles and Souganidis to nonlocal PDEs in a manner general enough to apply to HJBQVIs. We apply our schemes to compute the solutions of various classical problems from finance concerning optimal control of the exchange rate, optimal consumption with fixed and proportional transaction costs, and guaranteed minimum withdrawal benefits in variable annuities
    corecore