2 research outputs found

    Fast maximum likelihood estimation using continuous-time neural point process models

    Get PDF
    A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np2) to O(qp2). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.National Science Foundation (U.S.) (NSF grant DMS-1042134

    Likelihood Methods for Point Processes with Refractoriness

    Get PDF
    Likelihood-based encoding models founded on point processes have received significant attention in the literature because of their ability to reveal the information encoded by spiking neural populations. We propose an approximation to the likelihood of a point-process model of neurons that holds under assumptions about the continuous time process that are physiologically reasonable for neural spike trains: the presence of a refractory period, the predictability of the conditional intensity function, and its integrability. These are properties that apply to a large class of point processes arising in applications other than neuroscience. The proposed approach has several advantages over conventional ones. In particular, one can use standard fitting procedures for generalized linear models based on iteratively reweighted least squares while improving the accuracy of the approximation to the likelihood and reducing bias in the estimation of the parameters of the underlying continuous-time model. As a result, the proposed approach can use a larger bin size to achieve the same accuracy as conventional approaches would with a smaller bin size. This is particularly important when analyzing neural data with high mean and instantaneous firing rates. We demonstrate these claims on simulated and real neural spiking activity. By allowing a substantive increase in the required bin size, our algorithm has the potential to lower the barrier to the use of point-process methods in an increasing number of applications.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant DP1-OD003646
    corecore