2,777,115 research outputs found

    Likelihood Adaptively Modified Penalties

    Full text link
    A new family of penalty functions, adaptive to likelihood, is introduced for model selection in general regression models. It arises naturally through assuming certain types of prior distribution on the regression parameters. To study stability properties of the penalized maximum likelihood estimator, two types of asymptotic stability are defined. Theoretical properties, including the parameter estimation consistency, model selection consistency, and asymptotic stability, are established under suitable regularity conditions. An efficient coordinate-descent algorithm is proposed. Simulation results and real data analysis show that the proposed method has competitive performance in comparison with existing ones.Comment: 42 pages, 4 figure

    Likelihood-Ratio-Based Biometric Verification

    Get PDF
    The paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that, for single-user verification, the likelihood ratio is optimal. Second, we show that, under some general conditions, decisions based on posterior probabilities and likelihood ratios are equivalent and result in the same receiver operating curve. However, in a multi-user situation, these two methods lead to different average error rates. As a third result, we prove theoretically that, for multi-user verification, the use of the likelihood ratio is optimal in terms of average error rates. The superiority of this method is illustrated by experiments in fingerprint verification. It is shown that error rates below 10/sup -3/ can be achieved when using multiple fingerprints for template construction
    corecore