77 research outputs found

    Single-Image Deraining via Recurrent Residual Multiscale Networks.

    Full text link
    Existing deraining approaches represent rain streaks with different rain layers and then separate the layers from the background image. However, because of the complexity of real-world rain, such as various densities, shapes, and directions of rain streaks, it is very difficult to decompose a rain image into clean background and rain layers. In this article, we develop a novel single-image deraining method based on residual multiscale pyramid to mitigate the difficulty of rain image decomposition. To be specific, we progressively remove rain streaks in a coarse-to-fine fashion, where heavy rain is first removed in coarse-resolution levels and then light rain is eliminated in fine-resolution levels. Furthermore, based on the observation that residuals between a restored image and its corresponding rain image give critical clues of rain streaks, we regard the residuals as an attention map to remove rains in the consecutive finer level image. To achieve a powerful yet compact deraining framework, we construct our network by recurrent layers and remove rain with the same network in different pyramid levels. In addition, we design a multiscale kernel selection network (MSKSN) to facilitate our single network to remove rain streaks at different levels. In this manner, we reduce 81% of the model parameters without decreasing deraining performance compared with our prior work. Extensive experimental results on widely used benchmarks show that our approach achieves superior deraining performance compared with the state of the art

    Wavelet Channel Attention Module with a Fusion Network for Single Image Deraining

    Full text link
    Single image deraining is a crucial problem because rain severely degenerates the visibility of images and affects the performance of computer vision tasks like outdoor surveillance systems and intelligent vehicles. In this paper, we propose the new convolutional neural network (CNN) called the wavelet channel attention module with a fusion network. Wavelet transform and the inverse wavelet transform are substituted for down-sampling and up-sampling so feature maps from the wavelet transform and convolutions contain different frequencies and scales. Furthermore, feature maps are integrated by channel attention. Our proposed network learns confidence maps of four sub-band images derived from the wavelet transform of the original images. Finally, the clear image can be well restored via the wavelet reconstruction and fusion of the low-frequency part and high-frequency parts. Several experimental results on synthetic and real images present that the proposed algorithm outperforms state-of-the-art methods.Comment: Accepted to IEEE ICIP 202
    • …
    corecore