19 research outputs found

    Rethinking the Domain Gap in Near-infrared Face Recognition

    Full text link
    Heterogeneous face recognition (HFR) involves the intricate task of matching face images across the visual domains of visible (VIS) and near-infrared (NIR). While much of the existing literature on HFR identifies the domain gap as a primary challenge and directs efforts towards bridging it at either the input or feature level, our work deviates from this trend. We observe that large neural networks, unlike their smaller counterparts, when pre-trained on large scale homogeneous VIS data, demonstrate exceptional zero-shot performance in HFR, suggesting that the domain gap might be less pronounced than previously believed. By approaching the HFR problem as one of low-data fine-tuning, we introduce a straightforward framework: comprehensive pre-training, succeeded by a regularized fine-tuning strategy, that matches or surpasses the current state-of-the-art on four publicly available benchmarks. Corresponding codes can be found at https://github.com/michaeltrs/RethinkNIRVIS.Comment: 5 pages, 3 figures, 6 table

    Grouped Knowledge Distillation for Deep Face Recognition

    Full text link
    Compared with the feature-based distillation methods, logits distillation can liberalize the requirements of consistent feature dimension between teacher and student networks, while the performance is deemed inferior in face recognition. One major challenge is that the light-weight student network has difficulty fitting the target logits due to its low model capacity, which is attributed to the significant number of identities in face recognition. Therefore, we seek to probe the target logits to extract the primary knowledge related to face identity, and discard the others, to make the distillation more achievable for the student network. Specifically, there is a tail group with near-zero values in the prediction, containing minor knowledge for distillation. To provide a clear perspective of its impact, we first partition the logits into two groups, i.e., Primary Group and Secondary Group, according to the cumulative probability of the softened prediction. Then, we reorganize the Knowledge Distillation (KD) loss of grouped logits into three parts, i.e., Primary-KD, Secondary-KD, and Binary-KD. Primary-KD refers to distilling the primary knowledge from the teacher, Secondary-KD aims to refine minor knowledge but increases the difficulty of distillation, and Binary-KD ensures the consistency of knowledge distribution between teacher and student. We experimentally found that (1) Primary-KD and Binary-KD are indispensable for KD, and (2) Secondary-KD is the culprit restricting KD at the bottleneck. Therefore, we propose a Grouped Knowledge Distillation (GKD) that retains the Primary-KD and Binary-KD but omits Secondary-KD in the ultimate KD loss calculation. Extensive experimental results on popular face recognition benchmarks demonstrate the superiority of proposed GKD over state-of-the-art methods.Comment: 9 pages, 2 figures, 7 tables, accepted by AAAI 202

    EFaR 2023: Efficient Face Recognition Competition

    Full text link
    This paper presents the summary of the Efficient Face Recognition Competition (EFaR) held at the 2023 International Joint Conference on Biometrics (IJCB 2023). The competition received 17 submissions from 6 different teams. To drive further development of efficient face recognition models, the submitted solutions are ranked based on a weighted score of the achieved verification accuracies on a diverse set of benchmarks, as well as the deployability given by the number of floating-point operations and model size. The evaluation of submissions is extended to bias, cross-quality, and large-scale recognition benchmarks. Overall, the paper gives an overview of the achieved performance values of the submitted solutions as well as a diverse set of baselines. The submitted solutions use small, efficient network architectures to reduce the computational cost, some solutions apply model quantization. An outlook on possible techniques that are underrepresented in current solutions is given as well.Comment: Accepted at IJCB 202
    corecore