4 research outputs found

    Estimation of illuminants from color signals of illuminated objects

    Get PDF
    Color constancy is the ability of the human visual systems to discount the effect of the illumination and to assign approximate constant color descriptions to objects. This ability has long been studied and widely applied to many areas such as color reproduction and machine vision, especially with the development of digital color processing. This thesis work makes some improvements in illuminant estimation and computational color constancy based on the study and testing of existing algorithms. During recent years, it has been noticed that illuminant estimation based on gamut comparison is efficient and simple to implement. Although numerous investigations have been done in this field, there are still some deficiencies. A large part of this thesis has been work in the area of illuminant estimation through gamut comparison. Noting the importance of color lightness in gamut comparison, and also in order to simplify three-dimensional gamut calculation, a new illuminant estimation method is proposed through gamut comparison at separated lightness levels. Maximum color separation is a color constancy method which is based on the assumption that colors in a scene will obtain the largest gamut area under white illumination. The method was further derived and improved in this thesis to make it applicable and efficient. In addition, some intrinsic questions in gamut comparison methods, for example the relationship between the color space and the application of gamut or probability distribution, were investigated. Color constancy methods through spectral recovery have the limitation that there is no effective way to confine the range of object spectral reflectance. In this thesis, a new constraint on spectral reflectance based on the relative ratios of the parameters from principal component analysis (PCA) decomposition is proposed. The proposed constraint was applied to illuminant detection methods as a metric on the recovered spectral reflectance. Because of the importance of the sensor sensitivities and their wide variation, the influence from the sensor sensitivities on different kinds of illuminant estimation methods was also studied. Estimation method stability to wrong sensor information was tested, suggesting the possible solution to illuminant estimation on images with unknown sources. In addition, with the development of multi-channel imaging, some research on illuminant estimation for multi-channel images both on the correlated color temperature (CCT) estimation and the illuminant spectral recovery was performed in this thesis. All the improvement and new proposed methods in this thesis are tested and compared with those existing methods with best performance, both on synthetic data and real images. The comparison verified the high efficiency and implementation simplicity of the proposed methods

    Evaluation and optimal design of spectral sensitivities for digital color imaging

    Get PDF
    The quality of an image captured by color imaging system primarily depends on three factors: sensor spectral sensitivity, illumination and scene. While illumination is very important to be known, the sensitivity characteristics is critical to the success of imaging applications, and is necessary to be optimally designed under practical constraints. The ultimate image quality is judged subjectively by human visual system. This dissertation addresses the evaluation and optimal design of spectral sensitivity functions for digital color imaging devices. Color imaging fundamentals and device characterization are discussed in the first place. For the evaluation of spectral sensitivity functions, this dissertation concentrates on the consideration of imaging noise characteristics. Both signal-independent and signal-dependent noises form an imaging noise model and noises will be propagated while signal is processed. A new colorimetric quality metric, unified measure of goodness (UMG), which addresses color accuracy and noise performance simultaneously, is introduced and compared with other available quality metrics. Through comparison, UMG is designated as a primary evaluation metric. On the optimal design of spectral sensitivity functions, three generic approaches, optimization through enumeration evaluation, optimization of parameterized functions, and optimization of additional channel, are analyzed in the case of the filter fabrication process is unknown. Otherwise a hierarchical design approach is introduced, which emphasizes the use of the primary metric but the initial optimization results are refined through the application of multiple secondary metrics. Finally the validity of UMG as a primary metric and the hierarchical approach are experimentally tested and verified

    The role of the reference source in improving the CIE colour-rendering index for visual perception optimisation

    Get PDF
    The technology for the measurement of colour-rendering and colour quality is not new, but many parameters related to this issue are currently changing. A number of standard methods have been developed and are used by different specialty areas of the lighting industry. CIE 13.3 has been the accepted standard implemented by many users and has been used for many years. Light-emitting diode (LED) technology moves at a rapid pace and as this lighting source finds wider acceptance, it appears that traditional colour-rendering measurement methods produce inconsistent results. Practical application of various types of LEDs yielded results that challenged conventional thinking regarding colour quality measurement of light sources. This study investigates colour perception of human evaluators when applied to the traditional side-by-side booth method and also when applied to a unique double booth with rotating mirror. The reference source consists of an established incandescent lamp. The test source was assembled using four LEDs with wavelengths spanning the photometric spectrum fairly evenly. Recent studies have shown that the anatomy and physiology of the human eye is more complex than formerly accepted. Therefore, the development of updated measurement methodology also forces a fresh look at functioning and colour perception of the human eye, especially with regard to LEDs. For this reason, colour perception was investigated, especially with regards to age.Thesis (PhD)--University of Pretoria, 2019.Electrical, Electronic and Computer EngineeringPhDUnrestricte

    <title>Lighting system for color images</title>

    No full text
    corecore