716 research outputs found

    On the Roman Bondage Number of Graphs on surfaces

    Full text link
    A Roman dominating function on a graph GG is a labeling f:V(G){0,1,2}f : V(G) \rightarrow \{0, 1, 2\} such that every vertex with label 00 has a neighbor with label 22. The Roman domination number, γR(G)\gamma_R(G), of GG is the minimum of ΣvV(G)f(v)\Sigma_{v\in V (G)} f(v) over such functions. The Roman bondage number bR(G)b_R(G) is the cardinality of a smallest set of edges whose removal from GG results in a graph with Roman domination number not equal to γR(G)\gamma_R(G). In this paper we obtain upper bounds on bR(G)b_{R}(G) in terms of (a) the average degree and maximum degree, and (b) Euler characteristic, girth and maximum degree. We also show that the Roman bondage number of every graph which admits a 22-cell embedding on a surface with non negative Euler characteristic does not exceed 1515.Comment: 5 page

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Light Spanners

    Full text link
    A tt-spanner of a weighted undirected graph G=(V,E)G=(V,E), is a subgraph HH such that dH(u,v)tdG(u,v)d_H(u,v)\le t\cdot d_G(u,v) for all u,vVu,v\in V. The sparseness of the spanner can be measured by its size (the number of edges) and weight (the sum of all edge weights), both being important measures of the spanner's quality -- in this work we focus on the latter. Specifically, it is shown that for any parameters k1k\ge 1 and ϵ>0\epsilon>0, any weighted graph GG on nn vertices admits a (2k1)(1+ϵ)(2k-1)\cdot(1+\epsilon)-stretch spanner of weight at most w(MST(G))Oϵ(kn1/k/logk)w(MST(G))\cdot O_\epsilon(kn^{1/k}/\log k), where w(MST(G))w(MST(G)) is the weight of a minimum spanning tree of GG. Our result is obtained via a novel analysis of the classic greedy algorithm, and improves previous work by a factor of O(logk)O(\log k).Comment: 10 pages, 1 figure, to appear in ICALP 201
    corecore