1,202,446 research outputs found

    Polarization and light curve variability: the "patchy shell" model

    Full text link
    Recent advances in early detection and detailed monitoring of GRB afterglows have revealed variability in some afterglow light curves. One of the leading models for this behavior is the patchy shell model. This model attributes the variability to random angular fluctuations in the relativistic jet energy. These an-axisymmetric fluctuations should also impose variations in the degree and angle of polarization that are correlated to the light curve variability. In this letter we present a solution of the light curve and polarization resulting from a given spectrum of energy fluctuations. We compare light curves produced using this solution to the variable light curve of GRB 021004 and we show that the main features in both the light curve and the polarization fluctuations are very well reproduced by this model. We use our results to draw constraints on the characteristics of the energy fluctuations that might have been present in GRB 021004.Comment: 10 pages, 2 figures, Final version to appear in ApJ

    Blazar Variability: A Study of Non-stationarity and the Flux-RMS Relation

    Full text link
    We analyze X-ray light curves of the blazars Mrk 421, PKS 2155-304, and 3C 273 using observations by the Soft X-ray Telescope on board AstroSat and archival XMM-Newton data. We use light curves of length 30-90 ks each from 3-4 epochs for all three blazars. We apply the autoregressive integrated moving average (ARIMA) model which indicates the variability is consistent with short memory processes for most of the epochs. We show that the power spectral density (PSD) of the X-ray variability of the individual blazars are consistent within uncertainties across the epochs. This implies that the construction of broadband PSD using light curves from different epochs is accurate. However, using certain properties of the variance of the light curves and its segments, we show that the blazars exhibit hints of non-stationarity beyond that due to their characteristic red noise nature in some of those observations. We find a linear relationship between the root-mean-squared amplitude of variability at shorter timescales and the mean flux level at longer timescales for light curves of Mrk 421 across epochs separated by decades as well as light curves spanning 5 days and \sim10 yr. The presence of flux-rms relation over very different timescales may imply that, similar to the X-ray binaries and Seyfert galaxies, longer and shorter timescale variability are connected in blazars.Comment: 12 pages, 4 figures. Accepted for publication in the Astrophysical Journa

    Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009

    Get PDF
    We study the multi-band variability and correlations of the TeV blazar Mrk 421 on year time scales, which can bring additional insight on the processes responsible for its broadband emission. We observed Mrk 421 in the very high energy (VHE) gamma-ray range with the Cherenkov telescope MAGIC-I from March 2007 to June 2009 for a total of 96 hours of effective time after quality cuts. The VHE flux variability is quantified with several methods, including the Bayesian Block algorithm, which is applied to data from Cherenkov telescopes for the first time. The 2.3 year long MAGIC light curve is complemented with data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO, and Mets\"ahovi telescopes from February 2007 to July 2009, allowing for an excellent characterisation of the multi-band variability and correlations over year time scales. Mrk 421 was found in different gamma-ray emission states during the 2.3 year long observation period. Flares and different levels of variability in the gamma-ray light curve could be identified with the Bayesian Block algorithm. The same behaviour of a quiet and active emission was found in the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct correlation in time. The behaviour of the optical light curve of GASP-WEBT and the radio light curves by OVRO and Mets\"ahovi are different as they show no coincident features with the higher energetic light curves and a less variable emission. The fractional variability is overall increasing with energy. The comparable variability in the X-ray and VHE bands and their direct correlation during both high- and low-activity periods spanning many months show that the electron populations radiating the X-ray and gamma-ray photons are either the same, as expected in the Synchrotron-Self-Compton mechanism, or at least strongly correlated, as expected in electromagnetic cascades.Comment: Corresponding authors: Ann-Kristin Overkemping ([email protected]), Marina Manganaro ([email protected]), Diego Tescaro ([email protected]), To be published in Astronomy&Astrophysics (A&A), 12 pages, 9 figure

    Periodic variable stars in CoRoT field LRa02 observed with BEST II

    Full text link
    The Berlin Exoplanet Search Telescope II (BEST II) is a small wide field-of-view photometric survey telescope system located at the Observatorio Cerro Armazones, Chile. The high duty cycle combined with excellent observing conditions and millimagnitude photometric precision makes this instrument suitable for ground based support observations for the CoRoT space mission. Photometric data of the CoRoT LRa02 target field collected between November 2008 and March 2009 were analysed for stellar variability. The presented results will help in the future analysis of the CoRoT data, particularly in additional science programs related to variable stars. BEST II observes selected CoRoT target fields ahead of the space mission. The photometric data acquired are searched for stellar variability, periodic variable stars are identified with time series analysis of the obtained stellar light curves. We obtained the light curves of 104335 stars in the CoRoT LRa02 field over 41 nights. Variability was detected in light curves of 3726 stars of which 350 showed a regular period. These stars are, with the exception of 5 previously known variable stars, new discoveries.Comment: The figures with light curves can be find in the A&A journal as online onl

    Global stellar variability study in the field-of-view of the Kepler satellite

    Full text link
    We present the results of an automated variability analysis of the Kepler public data measured in the first quarter (Q1) of the mission. In total, about 150 000 light curves have been analysed to detect stellar variability, and to identify new members of known variability classes. We also focus on the detection of variables present in eclipsing binary systems, given the important constraints on stellar fundamental parameters they can provide. The methodology we use here is based on the automated variability classification pipeline which was previously developed for and applied successfully to the CoRoT exofield database and to the limited subset of a few thousand Kepler asteroseismology light curves. We use a Fourier decomposition of the light curves to describe their variability behaviour and use the resulting parameters to perform a supervised classification. Several improvements have been made, including a separate extractor method to detect the presence of eclipses when other variability is present in the light curves. We also included two new variability classes compared to previous work: variables showing signs of rotational modulation and of activity. Statistics are given on the number of variables and the number of good candidates per class. A comparison is made with results obtained for the CoRoT exoplanet data. We present some special discoveries, including variable stars in eclipsing binary systems. Many new candidate non-radial pulsators are found, mainly Delta Sct and Gamma Dor stars. We have studied those samples in more detail by using 2MASS colours. The full classification results are made available as an online catalogue.Comment: 15 pages, 5 figures, Accepted for publication in Astronomy and Astrophysics on 09/02/201

    Cloud Atlas: Rotational Spectral Modulations and potential Sulfide Clouds in the Planetary-mass, Late T-type Companion Ross 458C

    Get PDF
    Measurements of photometric variability at different wavelengths provide insights into the vertical cloud structure of brown dwarfs and planetary-mass objects. In seven Hubble Space Telescope consecutive orbits, spanning \sim10 h of observing time}, we obtained time-resolved spectroscopy of the planetary-mass T8-dwarf Ross 458C using the near-infrared Wide Field Camera 3. We found spectrophotometric variability with a peak-to-peak signal of 2.62±\pm0.02 % (in the 1.10-1.60~μ\mum white light curve). Using three different methods, we estimated a rotational period of 6.75±\pm1.58~h for the white light curve, and similar periods for narrow JJ- and HH- band light curves. Sine wave fits to the narrow JJ- and HH-band light curves suggest a tentative phase shift between the light curves with wavelength when we allow different periods between both light curves. If confirmed, this phase shift may be similar to the phase shift detected earlier for the T6.5 spectral type 2MASS J22282889-310262. We find that, in contrast with 2M2228, the variability of Ross~458C shows evidence for a {color trend} within the narrow JJ-band, but gray variations in the narrow HH-band. The spectral time-resolved variability of Ross 458C might be potentially due to heterogeneous sulfide clouds in the atmosphere of the object. Our discovery extends the study of spectral modulations of condensate clouds to the coolest T dwarfs, planetary-mass companions.Comment: Accepted in ApJ
    corecore