1,202,446 research outputs found
Polarization and light curve variability: the "patchy shell" model
Recent advances in early detection and detailed monitoring of GRB afterglows
have revealed variability in some afterglow light curves. One of the leading
models for this behavior is the patchy shell model. This model attributes the
variability to random angular fluctuations in the relativistic jet energy.
These an-axisymmetric fluctuations should also impose variations in the degree
and angle of polarization that are correlated to the light curve variability.
In this letter we present a solution of the light curve and polarization
resulting from a given spectrum of energy fluctuations. We compare light curves
produced using this solution to the variable light curve of GRB 021004 and we
show that the main features in both the light curve and the polarization
fluctuations are very well reproduced by this model. We use our results to draw
constraints on the characteristics of the energy fluctuations that might have
been present in GRB 021004.Comment: 10 pages, 2 figures, Final version to appear in ApJ
Blazar Variability: A Study of Non-stationarity and the Flux-RMS Relation
We analyze X-ray light curves of the blazars Mrk 421, PKS 2155-304, and 3C
273 using observations by the Soft X-ray Telescope on board AstroSat and
archival XMM-Newton data. We use light curves of length 30-90 ks each from 3-4
epochs for all three blazars. We apply the autoregressive integrated moving
average (ARIMA) model which indicates the variability is consistent with short
memory processes for most of the epochs. We show that the power spectral
density (PSD) of the X-ray variability of the individual blazars are consistent
within uncertainties across the epochs. This implies that the construction of
broadband PSD using light curves from different epochs is accurate. However,
using certain properties of the variance of the light curves and its segments,
we show that the blazars exhibit hints of non-stationarity beyond that due to
their characteristic red noise nature in some of those observations. We find a
linear relationship between the root-mean-squared amplitude of variability at
shorter timescales and the mean flux level at longer timescales for light
curves of Mrk 421 across epochs separated by decades as well as light curves
spanning 5 days and 10 yr. The presence of flux-rms relation over very
different timescales may imply that, similar to the X-ray binaries and Seyfert
galaxies, longer and shorter timescale variability are connected in blazars.Comment: 12 pages, 4 figures. Accepted for publication in the Astrophysical
Journa
Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009
We study the multi-band variability and correlations of the TeV blazar Mrk
421 on year time scales, which can bring additional insight on the processes
responsible for its broadband emission. We observed Mrk 421 in the very high
energy (VHE) gamma-ray range with the Cherenkov telescope MAGIC-I from March
2007 to June 2009 for a total of 96 hours of effective time after quality cuts.
The VHE flux variability is quantified with several methods, including the
Bayesian Block algorithm, which is applied to data from Cherenkov telescopes
for the first time. The 2.3 year long MAGIC light curve is complemented with
data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO,
and Mets\"ahovi telescopes from February 2007 to July 2009, allowing for an
excellent characterisation of the multi-band variability and correlations over
year time scales. Mrk 421 was found in different gamma-ray emission states
during the 2.3 year long observation period. Flares and different levels of
variability in the gamma-ray light curve could be identified with the Bayesian
Block algorithm. The same behaviour of a quiet and active emission was found in
the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct
correlation in time. The behaviour of the optical light curve of GASP-WEBT and
the radio light curves by OVRO and Mets\"ahovi are different as they show no
coincident features with the higher energetic light curves and a less variable
emission. The fractional variability is overall increasing with energy. The
comparable variability in the X-ray and VHE bands and their direct correlation
during both high- and low-activity periods spanning many months show that the
electron populations radiating the X-ray and gamma-ray photons are either the
same, as expected in the Synchrotron-Self-Compton mechanism, or at least
strongly correlated, as expected in electromagnetic cascades.Comment: Corresponding authors: Ann-Kristin Overkemping
([email protected]), Marina Manganaro
([email protected]), Diego Tescaro ([email protected]), To be published
in Astronomy&Astrophysics (A&A), 12 pages, 9 figure
Periodic variable stars in CoRoT field LRa02 observed with BEST II
The Berlin Exoplanet Search Telescope II (BEST II) is a small wide
field-of-view photometric survey telescope system located at the Observatorio
Cerro Armazones, Chile. The high duty cycle combined with excellent observing
conditions and millimagnitude photometric precision makes this instrument
suitable for ground based support observations for the CoRoT space mission.
Photometric data of the CoRoT LRa02 target field collected between November
2008 and March 2009 were analysed for stellar variability. The presented
results will help in the future analysis of the CoRoT data, particularly in
additional science programs related to variable stars. BEST II observes
selected CoRoT target fields ahead of the space mission. The photometric data
acquired are searched for stellar variability, periodic variable stars are
identified with time series analysis of the obtained stellar light curves. We
obtained the light curves of 104335 stars in the CoRoT LRa02 field over 41
nights. Variability was detected in light curves of 3726 stars of which 350
showed a regular period. These stars are, with the exception of 5 previously
known variable stars, new discoveries.Comment: The figures with light curves can be find in the A&A journal as
online onl
Global stellar variability study in the field-of-view of the Kepler satellite
We present the results of an automated variability analysis of the Kepler
public data measured in the first quarter (Q1) of the mission. In total, about
150 000 light curves have been analysed to detect stellar variability, and to
identify new members of known variability classes. We also focus on the
detection of variables present in eclipsing binary systems, given the important
constraints on stellar fundamental parameters they can provide. The methodology
we use here is based on the automated variability classification pipeline which
was previously developed for and applied successfully to the CoRoT exofield
database and to the limited subset of a few thousand Kepler asteroseismology
light curves. We use a Fourier decomposition of the light curves to describe
their variability behaviour and use the resulting parameters to perform a
supervised classification. Several improvements have been made, including a
separate extractor method to detect the presence of eclipses when other
variability is present in the light curves. We also included two new
variability classes compared to previous work: variables showing signs of
rotational modulation and of activity. Statistics are given on the number of
variables and the number of good candidates per class. A comparison is made
with results obtained for the CoRoT exoplanet data. We present some special
discoveries, including variable stars in eclipsing binary systems. Many new
candidate non-radial pulsators are found, mainly Delta Sct and Gamma Dor stars.
We have studied those samples in more detail by using 2MASS colours. The full
classification results are made available as an online catalogue.Comment: 15 pages, 5 figures, Accepted for publication in Astronomy and
Astrophysics on 09/02/201
Cloud Atlas: Rotational Spectral Modulations and potential Sulfide Clouds in the Planetary-mass, Late T-type Companion Ross 458C
Measurements of photometric variability at different wavelengths provide
insights into the vertical cloud structure of brown dwarfs and planetary-mass
objects. In seven Hubble Space Telescope consecutive orbits, spanning 10
h of observing time}, we obtained time-resolved spectroscopy of the
planetary-mass T8-dwarf Ross 458C using the near-infrared Wide Field Camera 3.
We found spectrophotometric variability with a peak-to-peak signal of
2.620.02 % (in the 1.10-1.60~m white light curve). Using three
different methods, we estimated a rotational period of 6.751.58~h for the
white light curve, and similar periods for narrow - and - band light
curves. Sine wave fits to the narrow - and -band light curves suggest a
tentative phase shift between the light curves with wavelength when we allow
different periods between both light curves. If confirmed, this phase shift may
be similar to the phase shift detected earlier for the T6.5 spectral type 2MASS
J22282889-310262. We find that, in contrast with 2M2228, the variability of
Ross~458C shows evidence for a {color trend} within the narrow -band, but
gray variations in the narrow -band. The spectral time-resolved variability
of Ross 458C might be potentially due to heterogeneous sulfide clouds in the
atmosphere of the object. Our discovery extends the study of spectral
modulations of condensate clouds to the coolest T dwarfs, planetary-mass
companions.Comment: Accepted in ApJ
- …
