3 research outputs found

    Light Field Spatial Super-resolution via Deep Combinatorial Geometry Embedding and Structural Consistency Regularization

    Full text link
    Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution as the limited sampling resources have to be shared with the angular dimension. LF spatial super-resolution (SR) thus becomes an indispensable part of the LF camera processing pipeline. The high-dimensionality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR. The performance of existing methods is still limited as they fail to thoroughly explore the coherence among LF views and are insufficient in accurately preserving the parallax structure of the scene. In this paper, we propose a novel learning-based LF spatial SR framework, in which each view of an LF image is first individually super-resolved by exploring the complementary information among views with combinatorial geometry embedding. For accurate preservation of the parallax structure among the reconstructed views, a regularization network trained over a structure-aware loss function is subsequently appended to enforce correct parallax relationships over the intermediate estimation. Our proposed approach is evaluated over datasets with a large number of testing images including both synthetic and real-world scenes. Experimental results demonstrate the advantage of our approach over state-of-the-art methods, i.e., our method not only improves the average PSNR by more than 1.0 dB but also preserves more accurate parallax details, at a lower computational cost.Comment: This paper was accepted by CVPR 202

    Spatial-Angular Interaction for Light Field Image Super-Resolution

    Full text link
    Light field (LF) cameras record both intensity and directions of light rays, and capture scenes from a number of viewpoints. Both information within each perspective (i.e., spatial information) and among different perspectives (i.e., angular information) is beneficial to image super-resolution (SR). In this paper, we propose a spatial-angular interactive network (namely, LF-InterNet) for LF image SR. Specifically, spatial and angular features are first separately extracted from input LFs, and then repetitively interacted to progressively incorporate spatial and angular information. Finally, the interacted features are fused to superresolve each sub-aperture image. Experimental results demonstrate the superiority of LF-InterNet over the state-of-the-art methods, i.e., our method can achieve high PSNR and SSIM scores with low computational cost, and recover faithful details in the reconstructed images.Comment: In this version, we have revised the paper and compared our LF-InterNet to the most recent LF-ATO method (CVPR2020). Codes and pre-trained models are available at https://github.com/YingqianWang/LF-InterNe

    Light Field Image Super-Resolution Using Deformable Convolution

    Full text link
    Light field (LF) cameras can record scenes from multiple perspectives, and thus introduce beneficial angular information for image super-resolution (SR). However, it is challenging to incorporate angular information due to disparities among LF images. In this paper, we propose a deformable convolution network (i.e., LF-DFnet) to handle the disparity problem for LF image SR. Specifically, we design an angular deformable alignment module (ADAM) for feature-level alignment. Based on ADAM, we further propose a collect-and-distribute approach to perform bidirectional alignment between the center-view feature and each side-view feature. Using our approach, angular information can be well incorporated and encoded into features of each view, which benefits the SR reconstruction of all LF images. Moreover, we develop a baseline-adjustable LF dataset to evaluate SR performance under different disparity variations. Experiments on both public and our self-developed datasets have demonstrated the superiority of our method. Our LF-DFnet can generate high-resolution images with more faithful details and achieve state-of-the-art reconstruction accuracy. Besides, our LF-DFnet is more robust to disparity variations, which has not been well addressed in literature.Comment: Accepted by IEEE Transactions on Image Processin
    corecore