2 research outputs found

    Lifting Coalgebra Modalities and MELL\mathsf{MELL} Model Structure to Eilenberg-Moore Categories

    Full text link
    A categorical model of the multiplicative and exponential fragments of intuitionistic linear logic (MELL\mathsf{MELL}), known as a \emph{linear category}, is a symmetric monoidal closed category with a monoidal coalgebra modality (also known as a linear exponential comonad). Inspired by Blute and Scott's work on categories of modules of Hopf algebras as models of linear logic, we study categories of algebras of monads (also known as Eilenberg-Moore categories) as models of MELL\mathsf{MELL}. We define a MELL\mathsf{MELL} lifting monad on a linear category as a Hopf monad -- in the Brugui{\`e}res, Lack, and Virelizier sense -- with a special kind of mixed distributive law over the monoidal coalgebra modality. As our main result, we show that the linear category structure lifts to the category of algebras of MELL\mathsf{MELL} lifting monads. We explain how groups in the category of coalgebras of the monoidal coalgebra modality induce MELL\mathsf{MELL} lifting monads and provide a source for such groups from enrichment over abelian groups. Along the way we also define mixed distributive laws of symmetric comonoidal monads over symmetric monoidal comonads and lifting differential category structure.Comment: An extend abstract version of this paper appears in the conference proceedings of the 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018), under the title "Lifting Coalgebra Modalities and MELL\mathsf{MELL} Model Structure to Eilenberg-Moore Categories

    Dagger linear logic for categorical quantum mechanics

    Get PDF
    Categorical quantum mechanics exploits the dagger compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. This article starts the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dagger linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics
    corecore