273 research outputs found

    Bounds on List Decoding of Rank-Metric Codes

    Full text link
    So far, there is no polynomial-time list decoding algorithm (beyond half the minimum distance) for Gabidulin codes. These codes can be seen as the rank-metric equivalent of Reed--Solomon codes. In this paper, we provide bounds on the list size of rank-metric codes in order to understand whether polynomial-time list decoding is possible or whether it works only with exponential time complexity. Three bounds on the list size are proven. The first one is a lower exponential bound for Gabidulin codes and shows that for these codes no polynomial-time list decoding beyond the Johnson radius exists. Second, an exponential upper bound is derived, which holds for any rank-metric code of length nn and minimum rank distance dd. The third bound proves that there exists a rank-metric code over \Fqm of length n≤mn \leq m such that the list size is exponential in the length for any radius greater than half the minimum rank distance. This implies that there cannot exist a polynomial upper bound depending only on nn and dd similar to the Johnson bound in Hamming metric. All three rank-metric bounds reveal significant differences to bounds for codes in Hamming metric.Comment: 10 pages, 2 figures, submitted to IEEE Transactions on Information Theory, short version presented at ISIT 201

    On the Geometry of Balls in the Grassmannian and List Decoding of Lifted Gabidulin Codes

    Get PDF
    The finite Grassmannian Gq(k,n)\mathcal{G}_{q}(k,n) is defined as the set of all kk-dimensional subspaces of the ambient space Fqn\mathbb{F}_{q}^{n}. Subsets of the finite Grassmannian are called constant dimension codes and have recently found an application in random network coding. In this setting codewords from Gq(k,n)\mathcal{G}_{q}(k,n) are sent through a network channel and, since errors may occur during transmission, the received words can possible lie in Gq(k′,n)\mathcal{G}_{q}(k',n), where k′≠kk'\neq k. In this paper, we study the balls in Gq(k,n)\mathcal{G}_{q}(k,n) with center that is not necessarily in Gq(k,n)\mathcal{G}_{q}(k,n). We describe the balls with respect to two different metrics, namely the subspace and the injection metric. Moreover, we use two different techniques for describing these balls, one is the Pl\"ucker embedding of Gq(k,n)\mathcal{G}_{q}(k,n), and the second one is a rational parametrization of the matrix representation of the codewords. With these results, we consider the problem of list decoding a certain family of constant dimension codes, called lifted Gabidulin codes. We describe a way of representing these codes by linear equations in either the matrix representation or a subset of the Pl\"ucker coordinates. The union of these equations and the equations which arise from the description of the ball of a given radius in the Grassmannian describe the list of codewords with distance less than or equal to the given radius from the received word.Comment: To be published in Designs, Codes and Cryptography (Springer

    Lower Rate Bounds for Hermitian-Lifted Codes for Odd Prime Characteristic

    Full text link
    Locally recoverable codes are error correcting codes with the additional property that every symbol of any codeword can be recovered from a small set of other symbols. This property is particularly desirable in cloud storage applications. A locally recoverable code is said to have availability tt if each position has tt disjoint recovery sets. Hermitian-lifted codes are locally recoverable codes with high availability first described by Lopez, Malmskog, Matthews, Pi\~nero-Gonzales, and Wootters. The codes are based on the well-known Hermitian curve and incorporate the novel technique of lifting to increase the rate of the code. Lopez et al. lower bounded the rate of the codes defined over fields with characteristic 2. This paper generalizes their work to show that the rate of Hermitian-lifted codes is bounded below by a positive constant depending on pp when q=plq=p^l for any odd prime pp
    • …
    corecore