756 research outputs found

    Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory

    Full text link
    In meta-learning an agent extracts knowledge from observed tasks, aiming to facilitate learning of novel future tasks. Under the assumption that future tasks are 'related' to previous tasks, the accumulated knowledge should be learned in a way which captures the common structure across learned tasks, while allowing the learner sufficient flexibility to adapt to novel aspects of new tasks. We present a framework for meta-learning that is based on generalization error bounds, allowing us to extend various PAC-Bayes bounds to meta-learning. Learning takes place through the construction of a distribution over hypotheses based on the observed tasks, and its utilization for learning a new task. Thus, prior knowledge is incorporated through setting an experience-dependent prior for novel tasks. We develop a gradient-based algorithm which minimizes an objective function derived from the bounds and demonstrate its effectiveness numerically with deep neural networks. In addition to establishing the improved performance available through meta-learning, we demonstrate the intuitive way by which prior information is manifested at different levels of the network.Comment: Accepted to ICML 201

    A neural network walks into a lab: towards using deep nets as models for human behavior

    Full text link
    What might sound like the beginning of a joke has become an attractive prospect for many cognitive scientists: the use of deep neural network models (DNNs) as models of human behavior in perceptual and cognitive tasks. Although DNNs have taken over machine learning, attempts to use them as models of human behavior are still in the early stages. Can they become a versatile model class in the cognitive scientist's toolbox? We first argue why DNNs have the potential to be interesting models of human behavior. We then discuss how that potential can be more fully realized. On the one hand, we argue that the cycle of training, testing, and revising DNNs needs to be revisited through the lens of the cognitive scientist's goals. Specifically, we argue that methods for assessing the goodness of fit between DNN models and human behavior have to date been impoverished. On the other hand, cognitive science might have to start using more complex tasks (including richer stimulus spaces), but doing so might be beneficial for DNN-independent reasons as well. Finally, we highlight avenues where traditional cognitive process models and DNNs may show productive synergy

    The Open World of Micro-Videos

    Full text link
    Micro-videos are six-second videos popular on social media networks with several unique properties. Firstly, because of the authoring process, they contain significantly more diversity and narrative structure than existing collections of video "snippets". Secondly, because they are often captured by hand-held mobile cameras, they contain specialized viewpoints including third-person, egocentric, and self-facing views seldom seen in traditional produced video. Thirdly, due to to their continuous production and publication on social networks, aggregate micro-video content contains interesting open-world dynamics that reflects the temporal evolution of tag topics. These aspects make micro-videos an appealing well of visual data for developing large-scale models for video understanding. We analyze a novel dataset of micro-videos labeled with 58 thousand tags. To analyze this data, we introduce viewpoint-specific and temporally-evolving models for video understanding, defined over state-of-the-art motion and deep visual features. We conclude that our dataset opens up new research opportunities for large-scale video analysis, novel viewpoints, and open-world dynamics

    An Adaptive Online HDP-HMM for Segmentation and Classification of Sequential Data

    Full text link
    In the recent years, the desire and need to understand sequential data has been increasing, with particular interest in sequential contexts such as patient monitoring, understanding daily activities, video surveillance, stock market and the like. Along with the constant flow of data, it is critical to classify and segment the observations on-the-fly, without being limited to a rigid number of classes. In addition, the model needs to be capable of updating its parameters to comply with possible evolutions. This interesting problem, however, is not adequately addressed in the literature since many studies focus on offline classification over a pre-defined class set. In this paper, we propose a principled solution to this gap by introducing an adaptive online system based on Markov switching models with hierarchical Dirichlet process priors. This infinite adaptive online approach is capable of segmenting and classifying the sequential data over unlimited number of classes, while meeting the memory and delay constraints of streaming contexts. The model is further enhanced by introducing a learning rate, responsible for balancing the extent to which the model sustains its previous learning (parameters) or adapts to the new streaming observations. Experimental results on several variants of stationary and evolving synthetic data and two video datasets, TUM Assistive Kitchen and collatedWeizmann, show remarkable performance in segmentation and classification, particularly for evolutionary sequences with changing distributions and/or containing new, unseen classes.Comment: 23 pages, 9 figures and 4 table

    Uncertainty-based Modulation for Lifelong Learning

    Full text link
    The creation of machine learning algorithms for intelligent agents capable of continuous, lifelong learning is a critical objective for algorithms being deployed on real-life systems in dynamic environments. Here we present an algorithm inspired by neuromodulatory mechanisms in the human brain that integrates and expands upon Stephen Grossberg\'s ground-breaking Adaptive Resonance Theory proposals. Specifically, it builds on the concept of uncertainty, and employs a series of neuromodulatory mechanisms to enable continuous learning, including self-supervised and one-shot learning. Algorithm components were evaluated in a series of benchmark experiments that demonstrate stable learning without catastrophic forgetting. We also demonstrate the critical role of developing these systems in a closed-loop manner where the environment and the agent\'s behaviors constrain and guide the learning process. To this end, we integrated the algorithm into an embodied simulated drone agent. The experiments show that the algorithm is capable of continuous learning of new tasks and under changed conditions with high classification accuracy (greater than 94 percent) in a virtual environment, without catastrophic forgetting. The algorithm accepts high dimensional inputs from any state-of-the-art detection and feature extraction algorithms, making it a flexible addition to existing systems. We also describe future development efforts focused on imbuing the algorithm with mechanisms to seek out new knowledge as well as employ a broader range of neuromodulatory processes

    Meta-learners' learning dynamics are unlike learners'

    Full text link
    Meta-learning is a tool that allows us to build sample-efficient learning systems. Here we show that, once meta-trained, LSTM Meta-Learners aren't just faster learners than their sample-inefficient deep learning (DL) and reinforcement learning (RL) brethren, but that they actually pursue fundamentally different learning trajectories. We study their learning dynamics on three sets of structured tasks for which the corresponding learning dynamics of DL and RL systems have been previously described: linear regression (Saxe et al., 2013), nonlinear regression (Rahaman et al., 2018; Xu et al., 2018), and contextual bandits (Schaul et al., 2019). In each case, while sample-inefficient DL and RL Learners uncover the task structure in a staggered manner, meta-trained LSTM Meta-Learners uncover almost all task structure concurrently, congruent with the patterns expected from Bayes-optimal inference algorithms. This has implications for research areas wherever the learning behaviour itself is of interest, such as safety, curriculum design, and human-in-the-loop machine learning.Comment: 26 pages, 23 figure

    Nested LSTMs

    Full text link
    We propose Nested LSTMs (NLSTM), a novel RNN architecture with multiple levels of memory. Nested LSTMs add depth to LSTMs via nesting as opposed to stacking. The value of a memory cell in an NLSTM is computed by an LSTM cell, which has its own inner memory cell. Specifically, instead of computing the value of the (outer) memory cell as ctouter=ftβŠ™ctβˆ’1+itβŠ™gtc^{outer}_t = f_t \odot c_{t-1} + i_t \odot g_t, NLSTM memory cells use the concatenation (ftβŠ™ctβˆ’1,itβŠ™gt)(f_t \odot c_{t-1}, i_t \odot g_t) as input to an inner LSTM (or NLSTM) memory cell, and set ctouterc^{outer}_t = htinnerh^{inner}_t. Nested LSTMs outperform both stacked and single-layer LSTMs with similar numbers of parameters in our experiments on various character-level language modeling tasks, and the inner memories of an LSTM learn longer term dependencies compared with the higher-level units of a stacked LSTM.Comment: Accepted at ACML 201

    Detection and Tracking of General Movable Objects in Large 3D Maps

    Full text link
    This paper studies the problem of detection and tracking of general objects with long-term dynamics, observed by a mobile robot moving in a large environment. A key problem is that due to the environment scale, it can only observe a subset of the objects at any given time. Since some time passes between observations of objects in different places, the objects might be moved when the robot is not there. We propose a model for this movement in which the objects typically only move locally, but with some small probability they jump longer distances, through what we call global motion. For filtering, we decompose the posterior over local and global movements into two linked processes. The posterior over the global movements and measurement associations is sampled, while we track the local movement analytically using Kalman filters. This novel filter is evaluated on point cloud data gathered autonomously by a mobile robot over an extended period of time. We show that tracking jumping objects is feasible, and that the proposed probabilistic treatment outperforms previous methods when applied to real world data. The key to efficient probabilistic tracking in this scenario is focused sampling of the object posteriors.Comment: Submitted for peer revie

    Induction Networks for Few-Shot Text Classification

    Full text link
    Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.Comment: 7 pages, 3 figure

    Provable Guarantees for Gradient-Based Meta-Learning

    Full text link
    We study the problem of meta-learning through the lens of online convex optimization, developing a meta-algorithm bridging the gap between popular gradient-based meta-learning and classical regularization-based multi-task transfer methods. Our method is the first to simultaneously satisfy good sample efficiency guarantees in the convex setting, with generalization bounds that improve with task-similarity, while also being computationally scalable to modern deep learning architectures and the many-task setting. Despite its simplicity, the algorithm matches, up to a constant factor, a lower bound on the performance of any such parameter-transfer method under natural task similarity assumptions. We use experiments in both convex and deep learning settings to verify and demonstrate the applicability of our theory.Comment: ICML 201
    • …
    corecore