189,691 research outputs found
Graphene/Li-Ion battery
Density function theory calculations were carried out to clarify storage
states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin
polarization, charge distribution, electronic gap, surface curvature and dipole
momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by
one Li atom is spin polarized, so there would be different gaps for different
spin polarization in electrons. Calculation results demonstrated that a smaller
cluster between each two larger clusters is preferable, because it could
improve graphene Li-ion batteries; consequently, the most proper graphene anode
structure has been proposed.Comment: 19 pages, 7 figures, 1 tabl
NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status
In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks
Modelling Li+ Ion Battery Electrode Properties
We formulated two detailed models for an electrolytic cell with particulate electrodes based on a lithium atom concentration dependent Butler-Volmer condition at the interface between electrode particles and the electrolyte. The first was based on a dilute-ion assumption for the electrolyte, while the second assumed that Li ions are present in excess.
For the first, we used the method of multiple scales to homogenize this model over the microstructure, formed by the small lithium particles in the electrodes.
For the second, we gave rigorous bounds for the effective electrochemical conductivity for a linearized case.
We expect similar results and bounds for the "full nonlinear problem" because variational results are generally not adversely affected by a sinh term.
Finally we used the asymptotic methods, based on parameters estimated from the literature, to attain a greatly simplified one-dimensional version of the original homogenized model. This simplified model accounts for the fact that diffusion of lithium atoms within individual electrode particles is relatively much faster than that of lithium ions across the whole cell so that lithium ion diffusion is what limits the performance of the battery. However, since most of the potential drop occurs across the Debye layers surrounding each electrode particle, lithium ion diffusion only significantly affects cell performance if there is more or less complete depletion of lithium ions in some region of the electrolyte which causes a break in the current flowing across the cell. This causes catastrophic failure. Providing such failure does not occur the potential drop across the cell is determined by the concentration of lithium atoms in the electrode particles. Within each electrode lithium atom concentration is, to leading order, a function of time only and not of position within the electrode. The depletion of electrode lithium atom concentration is directly proportional to the current being drawn off the cell. This leads one to expect that the potential of the cell gradually drops as current is drawn of it.
We would like to emphasize that all the homogenization methods employed in this work give a systematic approach for investigating the effect that changes in the microstructure have on the behaviour of the battery. However, due to lack of time, we have not used this method to investigate particular particle geometries
Recommended from our members
Cathode chemistries and electrode parameters affecting the fast charging performance of li-ion batteries
Li-ion battery fast-charging technology plays an important role in popularizing electric vehicles (EV), which critically need a charging process that is as simple and quick as pumping fuel for conventional internal combustion engine vehicles. To ensure stable and safe fast charging of Li-ion battery, understanding the electrochemical and thermal behaviors of battery electrodes under high rate charges is crucial, since it provides insight into the limiting factors that restrict the battery from acquiring energy at high rates. In this work, charging simulations are performed on Li-ion batteries that use the LiCoO2 (LCO), LiMn2O4 (LMO), and LiFePO4 (LFP) as the cathodes. An electrochemical-thermal coupling model is first developed and experimentally validated on a 2.6Ah LCO based Li-ion battery and is then adjusted to study the LMO and LFP based batteries. LCO, LMO, and LFP based Li-ion batteries exhibited different thermal responses during charges due to their different entropy profiles, and results show that the entropy change of the LCO battery plays a positive role in alleviating its temperature rise during charges. Among the batteries, the LFP battery is difficult to be charged at high rates due to the charge transfer limitation caused by the low electrical conductivity of the LFP cathode, which, however, can be improved through doping or adding conductive additives. A parametric study is also performed by considering different electrode thicknesses and secondary particle sizes. It reveals that the concentration polarization at the electrode and particle levels can be weaken by using thin electrodes and small solid particles, respectively. These changes are helpful to mitigate the diffusion limitation and improve the performance of Li-ion batteries during high rate charges, but careful consideration should be taken when applying these changes since they can reduce the energy density of the batteries
Failure Detection for Over-Discharged Li-Ion Batteries
poster abstractLi-ion batteries are high density, slow loss of charge when not in use and no memory effect. Vast research on Li-ion batteries has been focusing on increasing the energy density, durability, and cost. Due to its advantages it has been widely used in consumer electronics and electric vehicles. Apart from its advantages, safety is a major concern for Li-ion batteries. The Li-ion safety issues have been widely publicized due to devastating incidents with laptop and cell phone batteries. Despite of much research towards the safety of Li-ion battery, it remains as a major concern related to Li-Ion batteries. A failure of Li-ion battery may result in thermal runaway. Li-ion battery failure may be due to overcharge, over-discharge, short circuits, particles poisoning, mechanical or thermal damage [1, 2]. Short circuit, overcharge, and over-discharge are the most common electrical abuses a battery suffers.
This poster presents preliminary results for the failure signatures of over-discharged Li-ion batteries, and proposes a rule-based method and a probabilistic method for failure detection. The two methods Rule-based method and Probabilistic method are verified using experimental results for a Li-ion battery. The proposed methods were successfully implemented in a real-time system for failure detection and early warning
Electroplating lithium transition metal oxides.
Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility
Electrochemical Lithium Harvesting from Waste Li-ion Batteries
poster abstractThis study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li-ion battery containing Li-ion source materials from the battery’s anode, cathode, and electrolyte, thereby recycling the Li contained in the waste battery at the room temperature. The harvested Li metal in the battery system was discharged to produce the electricity by using water as the cathode. The discharge voltage of the water showed 2.7 V at 0.1 mA/cm2 versus Li metal harvested from waste Li-ion batteries, compared to 2.8 V versus fresh Li metal at the same current rate. Since the electrodes for this proposed battery system are water and the contents of waste Li-ion batteries, the cost of the battery decreases, which is an attractive strategy for a large size energy storage application. The new design of a battery cell is accompanied in this research. The cell design has two anodes and one cathode which allow it to charge and discharge simultaneously. Thus far, the designs for the cell have been finalized, and will soon be machined so that testing may follow. This drives toward the hopes that an actual battery will be made which can directly harvest the Li metal from a waste Li-ion battery and gain energy immediately. This research will hopefully introduce a new, higher-energy-potential battery while using waste Li-ion batteries which will drastically reduce the cost of Li-ion batteries
Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications
poster abstractWith using a multi-layer electrolyte that consists of one liquid electrolyte and one solid electrolyte, the choices for cathode will be dramatically widened to include solid, liquid, and gas phases. Applying this concept, gas and liquid phases have been used as cathodes to create different battery systems such as the Li-air, Li-sea water, and Li-aqueous liquid batteries. Based on these reports, we hypothesized that, by charging the cell, Li metal could be electrochemically collected from any material containing Li-ions. This idea extended to harvesting Li metal from waste Li-ion batteries, in both solid and liquid phases, that contain Li-ion sources such as the LixC6 anode, LixFePO4 cathode, and LiPF6 in the EC:DEC electrolyte. The harvested Li metal could then be an energy source for Li-Liquid flow batteries by using water as the cathode.
This study demonstrates the feasibility of using waste Li-ion batteries and water for the electrodes in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li metal was collected electrochemically from a waste Li-ion battery containing Li-ion source materials from the battery’s anode, cathode, and electrolyte, thereby recycling the Li contained in the waste battery. The harvested Li metal in the battery system was discharged to produce the electricity by using water as the cathode. The discharge voltage of the water showed 2.7 V at 0.1 mA/cm2 versus Li metal harvested from waste Li-ion batteries, compared to 2.8 V versus fresh Li metal at the same current rate. Since the energy source for this proposed battery system is provided by waste Li-ion batteries and water, the cost of the battery dramatically decreases, which is an attractive strategy for a large size energy storage applicatio
- …
