19,473 research outputs found

    Leveraging Multiple Channels in Ad Hoc Networks

    Get PDF

    Spectral Efficiency Scaling Laws in Dense Random Wireless Networks with Multiple Receive Antennas

    Full text link
    This paper considers large random wireless networks where transmit-and-receive node pairs communicate within a certain range while sharing a common spectrum. By modeling the spatial locations of nodes based on stochastic geometry, analytical expressions for the ergodic spectral efficiency of a typical node pair are derived as a function of the channel state information available at a receiver (CSIR) in terms of relevant system parameters: the density of communication links, the number of receive antennas, the path loss exponent, and the operating signal-to-noise ratio. One key finding is that when the receiver only exploits CSIR for the direct link, the sum of spectral efficiencies linearly improves as the density increases, when the number of receive antennas increases as a certain super-linear function of the density. When each receiver exploits CSIR for a set of dominant interfering links in addition to the direct link, the sum of spectral efficiencies linearly increases with both the density and the path loss exponent if the number of antennas is a linear function of the density. This observation demonstrates that having CSIR for dominant interfering links provides a multiplicative gain in the scaling law. It is also shown that this linear scaling holds for direct CSIR when incorporating the effect of the receive antenna correlation, provided that the rank of the spatial correlation matrix scales super-linearly with the density. Simulation results back scaling laws derived from stochastic geometry.Comment: Submitte

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities

    Secure Communications in Millimeter Wave Ad Hoc Networks

    Get PDF
    Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.Comment: Accepted by IEEE Transactions on Wireless Communication
    • …
    corecore