6 research outputs found

    SpeechBERT: An Audio-and-text Jointly Learned Language Model for End-to-end Spoken Question Answering

    Full text link
    While various end-to-end models for spoken language understanding tasks have been explored recently, this paper is probably the first known attempt to challenge the very difficult task of end-to-end spoken question answering (SQA). Learning from the very successful BERT model for various text processing tasks, here we proposed an audio-and-text jointly learned SpeechBERT model. This model outperformed the conventional approach of cascading ASR with the following text question answering (TQA) model on datasets including ASR errors in answer spans, because the end-to-end model was shown to be able to extract information out of audio data before ASR produced errors. When ensembling the proposed end-to-end model with the cascade architecture, even better performance was achieved. In addition to the potential of end-to-end SQA, the SpeechBERT can also be considered for many other spoken language understanding tasks just as BERT for many text processing tasks.Comment: Interspeech 202

    Adding Connectionist Temporal Summarization into Conformer to Improve Its Decoder Efficiency For Speech Recognition

    Full text link
    The Conformer model is an excellent architecture for speech recognition modeling that effectively utilizes the hybrid losses of connectionist temporal classification (CTC) and attention to train model parameters. To improve the decoding efficiency of Conformer, we propose a novel connectionist temporal summarization (CTS) method that reduces the number of frames required for the attention decoder fed from the acoustic sequences generated by the encoder, thus reducing operations. However, to achieve such decoding improvements, we must fine-tune model parameters, as cross-attention observations are changed and thus require corresponding refinements. Our final experiments show that, with a beamwidth of 4, the LibriSpeech's decoding budget can be reduced by up to 20% and for FluentSpeech data it can be reduced by 11%, without losing ASR accuracy. An improvement in accuracy is even found for the LibriSpeech "test-other" set. The word error rate (WER) is reduced by 6\% relative at the beam width of 1 and by 3% relative at the beam width of 4.Comment: Submitted to INTERSPEECH 2022 (5 pages, 2 figures

    Leveraging Acoustic and Linguistic Embeddings from Pretrained speech and language Models for Intent Classification

    Full text link
    Intent classification is a task in spoken language understanding. An intent classification system is usually implemented as a pipeline process, with a speech recognition module followed by text processing that classifies the intents. There are also studies of end-to-end system that takes acoustic features as input and classifies the intents directly. Such systems don't take advantage of relevant linguistic information, and suffer from limited training data. In this work, we propose a novel intent classification framework that employs acoustic features extracted from a pretrained speech recognition system and linguistic features learned from a pretrained language model. We use knowledge distillation technique to map the acoustic embeddings towards linguistic embeddings. We perform fusion of both acoustic and linguistic embeddings through cross-attention approach to classify intents. With the proposed method, we achieve 90.86% and 99.07% accuracy on ATIS and Fluent speech corpus, respectively

    Speak or Chat with Me: End-to-End Spoken Language Understanding System with Flexible Inputs

    Full text link
    A major focus of recent research in spoken language understanding (SLU) has been on the end-to-end approach where a single model can predict intents directly from speech inputs without intermediate transcripts. However, this approach presents some challenges. First, since speech can be considered as personally identifiable information, in some cases only automatic speech recognition (ASR) transcripts are accessible. Second, intent-labeled speech data is scarce. To address the first challenge, we propose a novel system that can predict intents from flexible types of inputs: speech, ASR transcripts, or both. We demonstrate strong performance for either modality separately, and when both speech and ASR transcripts are available, through system combination, we achieve better results than using a single input modality. To address the second challenge, we leverage a semantically robust pre-trained BERT model and adopt a cross-modal system that co-trains text embeddings and acoustic embeddings in a shared latent space. We further enhance this system by utilizing an acoustic module pre-trained on LibriSpeech and domain-adapting the text module on our target datasets. Our experiments show significant advantages for these pre-training and fine-tuning strategies, resulting in a system that achieves competitive intent-classification performance on Snips SLU and Fluent Speech Commands datasets.Comment: Accepted to Interspeech 202

    Large-scale Transfer Learning for Low-resource Spoken Language Understanding

    Full text link
    End-to-end Spoken Language Understanding (SLU) models are made increasingly large and complex to achieve the state-ofthe-art accuracy. However, the increased complexity of a model can also introduce high risk of over-fitting, which is a major challenge in SLU tasks due to the limitation of available data. In this paper, we propose an attention-based SLU model together with three encoder enhancement strategies to overcome data sparsity challenge. The first strategy focuses on the transferlearning approach to improve feature extraction capability of the encoder. It is implemented by pre-training the encoder component with a quantity of Automatic Speech Recognition annotated data relying on the standard Transformer architecture and then fine-tuning the SLU model with a small amount of target labelled data. The second strategy adopts multitask learning strategy, the SLU model integrates the speech recognition model by sharing the same underlying encoder, such that improving robustness and generalization ability. The third strategy, learning from Component Fusion (CF) idea, involves a Bidirectional Encoder Representation from Transformer (BERT) model and aims to boost the capability of the decoder with an auxiliary network. It hence reduces the risk of over-fitting and augments the ability of the underlying encoder, indirectly. Experiments on the FluentAI dataset show that cross-language transfer learning and multi-task strategies have been improved by up to 4:52% and 3:89% respectively, compared to the baseline.Comment: will be presented in INTERSPEECH 202

    End-to-End Spoken Language Understanding Without Full Transcripts

    Full text link
    An essential component of spoken language understanding (SLU) is slot filling: representing the meaning of a spoken utterance using semantic entity labels. In this paper, we develop end-to-end (E2E) spoken language understanding systems that directly convert speech input to semantic entities and investigate if these E2E SLU models can be trained solely on semantic entity annotations without word-for-word transcripts. Training such models is very useful as they can drastically reduce the cost of data collection. We created two types of such speech-to-entities models, a CTC model and an attention-based encoder-decoder model, by adapting models trained originally for speech recognition. Given that our experiments involve speech input, these systems need to recognize both the entity label and words representing the entity value correctly. For our speech-to-entities experiments on the ATIS corpus, both the CTC and attention models showed impressive ability to skip non-entity words: there was little degradation when trained on just entities versus full transcripts. We also explored the scenario where the entities are in an order not necessarily related to spoken order in the utterance. With its ability to do re-ordering, the attention model did remarkably well, achieving only about 2% degradation in speech-to-bag-of-entities F1 score.Comment: 5 pages, to be published in Interspeech 202
    corecore