283 research outputs found

    SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation

    Full text link
    We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. To the best of our knowledge, SGPN is the first framework to learn 3D instance-aware semantic segmentation on point clouds. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance

    BEVTrack: A Simple and Strong Baseline for 3D Single Object Tracking in Bird's-Eye View

    Full text link
    3D Single Object Tracking (SOT) is a fundamental task of computer vision, proving essential for applications like autonomous driving. It remains challenging to localize the target from surroundings due to appearance variations, distractors, and the high sparsity of point clouds. The spatial information indicating objects' spatial adjacency across consecutive frames is crucial for effective object tracking. However, existing trackers typically employ point-wise representation with irregular formats, leading to insufficient use of this important spatial knowledge. As a result, these trackers usually require elaborate designs and solving multiple subtasks. In this paper, we propose BEVTrack, a simple yet effective baseline that performs tracking in Bird's-Eye View (BEV). This representation greatly retains spatial information owing to its ordered structure and inherently encodes the implicit motion relations of the target as well as distractors. To achieve accurate regression for targets with diverse attributes (\textit{e.g.}, sizes and motion patterns), BEVTrack constructs the likelihood function with the learned underlying distributions adapted to different targets, rather than making a fixed Laplace or Gaussian assumption as in previous works. This provides valuable priors for tracking and thus further boosts performance. While only using a single regression loss with a plain convolutional architecture, BEVTrack achieves state-of-the-art performance on three large-scale datasets, KITTI, NuScenes, and Waymo Open Dataset while maintaining a high inference speed of about 200 FPS. The code will be released at https://github.com/xmm-prio/BEVTrack.Comment: The code will be released at https://github.com/xmm-prio/BEVTrac

    Small Object Tracking in LiDAR Point Cloud: Learning the Target-awareness Prototype and Fine-grained Search Region

    Full text link
    Single Object Tracking in LiDAR point cloud is one of the most essential parts of environmental perception, in which small objects are inevitable in real-world scenarios and will bring a significant barrier to the accurate location. However, the existing methods concentrate more on exploring universal architectures for common categories and overlook the challenges that small objects have long been thorny due to the relative deficiency of foreground points and a low tolerance for disturbances. To this end, we propose a Siamese network-based method for small object tracking in the LiDAR point cloud, which is composed of the target-awareness prototype mining (TAPM) module and the regional grid subdivision (RGS) module. The TAPM module adopts the reconstruction mechanism of the masked decoder to learn the prototype in the feature space, aiming to highlight the presence of foreground points that will facilitate the subsequent location of small objects. Through the above prototype is capable of accentuating the small object of interest, the positioning deviation in feature maps still leads to high tracking errors. To alleviate this issue, the RGS module is proposed to recover the fine-grained features of the search region based on ViT and pixel shuffle layers. In addition, apart from the normal settings, we elaborately design a scaling experiment to evaluate the robustness of the different trackers on small objects. Extensive experiments on KITTI and nuScenes demonstrate that our method can effectively improve the tracking performance of small targets without affecting normal-sized objects

    Object Re-Identification from Point Clouds

    Full text link
    Object re-identification (ReID) from images plays a critical role in application domains of image retrieval (surveillance, retail analytics, etc.) and multi-object tracking (autonomous driving, robotics, etc.). However, systems that additionally or exclusively perceive the world from depth sensors are becoming more commonplace without any corresponding methods for object ReID. In this work, we fill the gap by providing the first large-scale study of object ReID from point clouds and establishing its performance relative to image ReID. To enable such a study, we create two large-scale ReID datasets with paired image and LiDAR observations and propose a lightweight matching head that can be concatenated to any set or sequence processing backbone (e.g., PointNet or ViT), creating a family of comparable object ReID networks for both modalities. Run in Siamese style, our proposed point cloud ReID networks can make thousands of pairwise comparisons in real-time (1010 Hz). Our findings demonstrate that their performance increases with higher sensor resolution and approaches that of image ReID when observations are sufficiently dense. Our strongest network trained at the largest scale achieves ReID accuracy exceeding 90%90\% for rigid objects and 85%85\% for deformable objects (without any explicit skeleton normalization). To our knowledge, we are the first to study object re-identification from real point cloud observations
    • …
    corecore