1,808 research outputs found

    Boosting Large Language Model for Speech Synthesis: An Empirical Study

    Full text link
    Large language models (LLMs) have made significant advancements in natural language processing and are concurrently extending the language ability to other modalities, such as speech and vision. Nevertheless, most of the previous work focuses on prompting LLMs with perception abilities like auditory comprehension, and the effective approach for augmenting LLMs with speech synthesis capabilities remains ambiguous. In this paper, we conduct a comprehensive empirical exploration of boosting LLMs with the ability to generate speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech synthesis model VALL-E. We compare three integration methods between LLMs and speech synthesis models, including directly fine-tuned LLMs, superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-E using LLMs as a powerful text encoder. Experimental results show that, using LoRA method to fine-tune LLMs directly to boost the speech synthesis capability does not work well, and superposed LLMs and VALL-E can improve the quality of generated speech both in speaker similarity and word error rate (WER). Among these three methods, coupled methods leveraging LLMs as the text encoder can achieve the best performance, making it outperform original speech synthesis models with a consistently better speaker similarity and a significant (10.9%) WER reduction

    Sparks of Large Audio Models: A Survey and Outlook

    Full text link
    This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, \textit{Large Audio Models}, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding \textit{Foundational Large Audio Models}, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of \textit{Large Audio Models} with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.Comment: work in progress, Repo URL: https://github.com/EmulationAI/awesome-large-audio-model

    Transfer learning of language-independent end-to-end ASR with language model fusion

    Full text link
    This work explores better adaptation methods to low-resource languages using an external language model (LM) under the framework of transfer learning. We first build a language-independent ASR system in a unified sequence-to-sequence (S2S) architecture with a shared vocabulary among all languages. During adaptation, we perform LM fusion transfer, where an external LM is integrated into the decoder network of the attention-based S2S model in the whole adaptation stage, to effectively incorporate linguistic context of the target language. We also investigate various seed models for transfer learning. Experimental evaluations using the IARPA BABEL data set show that LM fusion transfer improves performances on all target five languages compared with simple transfer learning when the external text data is available. Our final system drastically reduces the performance gap from the hybrid systems.Comment: Accepted at ICASSP201

    Cross-Language Speech Emotion Recognition Using Multimodal Dual Attention Transformers

    Full text link
    Despite the recent progress in speech emotion recognition (SER), state-of-the-art systems are unable to achieve improved performance in cross-language settings. In this paper, we propose a Multimodal Dual Attention Transformer (MDAT) model to improve cross-language SER. Our model utilises pre-trained models for multimodal feature extraction and is equipped with a dual attention mechanism including graph attention and co-attention to capture complex dependencies across different modalities and achieve improved cross-language SER results using minimal target language data. In addition, our model also exploits a transformer encoder layer for high-level feature representation to improve emotion classification accuracy. In this way, MDAT performs refinement of feature representation at various stages and provides emotional salient features to the classification layer. This novel approach also ensures the preservation of modality-specific emotional information while enhancing cross-modality and cross-language interactions. We assess our model's performance on four publicly available SER datasets and establish its superior effectiveness compared to recent approaches and baseline models.Comment: Under Review IEEE TM

    Developing RNN-T Models Surpassing High-Performance Hybrid Models with Customization Capability

    Full text link
    Because of its streaming nature, recurrent neural network transducer (RNN-T) is a very promising end-to-end (E2E) model that may replace the popular hybrid model for automatic speech recognition. In this paper, we describe our recent development of RNN-T models with reduced GPU memory consumption during training, better initialization strategy, and advanced encoder modeling with future lookahead. When trained with Microsoft's 65 thousand hours of anonymized training data, the developed RNN-T model surpasses a very well trained hybrid model with both better recognition accuracy and lower latency. We further study how to customize RNN-T models to a new domain, which is important for deploying E2E models to practical scenarios. By comparing several methods leveraging text-only data in the new domain, we found that updating RNN-T's prediction and joint networks using text-to-speech generated from domain-specific text is the most effective.Comment: Accepted by Interspeech 202

    Lexical Speaker Error Correction: Leveraging Language Models for Speaker Diarization Error Correction

    Full text link
    Speaker diarization (SD) is typically used with an automatic speech recognition (ASR) system to ascribe speaker labels to recognized words. The conventional approach reconciles outputs from independently optimized ASR and SD systems, where the SD system typically uses only acoustic information to identify the speakers in the audio stream. This approach can lead to speaker errors especially around speaker turns and regions of speaker overlap. In this paper, we propose a novel second-pass speaker error correction system using lexical information, leveraging the power of modern language models (LMs). Our experiments across multiple telephony datasets show that our approach is both effective and robust. Training and tuning only on the Fisher dataset, this error correction approach leads to relative word-level diarization error rate (WDER) reductions of 15-30% on three telephony datasets: RT03-CTS, Callhome American English and held-out portions of Fisher.Comment: Accepted at INTERSPEECH 202

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field

    Security and privacy problems in voice assistant applications: A survey

    Get PDF
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain
    corecore