1,808 research outputs found

    Next Generation Technologies for Smart Healthcare: Challenges, Vision, Model, Trends and Future Directions

    Get PDF
    Modern industry employs technologies for automation that may include Internet of Things (IoT), Cloud and/or Fog Computing, 5G as well as Artificial Intelligence (AI), Machine Learning (ML), or Blockchain. Currently, a part of research for the new industrial era is in the direction of improving healthcare services. This work throws light on some of the major challenges in providing affordable, efficient, secure and reliable healthcare from the viewpoint of computer and medical sciences. We describe a vision of how a holistic model can fulfill the growing demands of healthcare industry, and explain a conceptual model that can provide a complete solution for these increasing demands. In our model, we elucidate the components and their interaction at different levels, leveraging state‐of‐the art technologies in IoT, Fog computing, AI, ML and Blockchain. We finally describe current trends in this field and propose future directions to explore emerging paradigms and technologies on evolution of healthcare leveraging next generation computing systems

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Empowering Smart Cities with Fog Computing: A Versatile Framework for Enhanced Healthcare Services and Beyond

    Get PDF
    Fog Computing represents a distributed computing infrastructure strategically positioned at the network's edge, acting as an intermediate layer between remote cloud services and the data-generating smart devices on the ground. Leveraging this concept, a flexible and efficient smart city design emerges, offering a diverse range of applications, including smart healthcare, car parking, power management, water management, and waste management. The implementation of Fog computing enables reduced data processing latency and equitable workload distribution across fog nodes. The smart city system comprises several layers, namely connection, real-time processing, neighborhood linking, main processing, and data server layers. The flexibility of this framework allows for the scaling up or down of layers depending on specific smart city applications. In a case study focused on Smart healthcare services, the iFogSim platform was utilized to evaluate the system's performance. Notably, the results demonstrated a significant reduction in network usage, data processing latency, and processing costs when compared to traditional cloud computing solutions. Consequently, this improvement in efficiency translated into an enhanced user experience, offering superior scalability and reliability to users utilizing smart city services, including healthcare facilities
    corecore