391 research outputs found

    Essential Features: Reducing the Attack Surface of Adversarial Perturbations with Robust Content-Aware Image Preprocessing

    Full text link
    Adversaries are capable of adding perturbations to an image to fool machine learning models into incorrect predictions. One approach to defending against such perturbations is to apply image preprocessing functions to remove the effects of the perturbation. Existing approaches tend to be designed orthogonally to the content of the image and can be beaten by adaptive attacks. We propose a novel image preprocessing technique called Essential Features that transforms the image into a robust feature space that preserves the main content of the image while significantly reducing the effects of the perturbations. Specifically, an adaptive blurring strategy that preserves the main edge features of the original object along with a k-means color reduction approach is employed to simplify the image to its k most representative colors. This approach significantly limits the attack surface for adversaries by limiting the ability to adjust colors while preserving pertinent features of the original image. We additionally design several adaptive attacks and find that our approach remains more robust than previous baselines. On CIFAR-10 we achieve 64% robustness and 58.13% robustness on RESISC45, raising robustness by over 10% versus state-of-the-art adversarial training techniques against adaptive white-box and black-box attacks. The results suggest that strategies that retain essential features in images by adaptive processing of the content hold promise as a complement to adversarial training for boosting robustness against adversarial inputs

    Evaluating the Robustness of Trigger Set-Based Watermarks Embedded in Deep Neural Networks

    Full text link
    Trigger set-based watermarking schemes have gained emerging attention as they provide a means to prove ownership for deep neural network model owners. In this paper, we argue that state-of-the-art trigger set-based watermarking algorithms do not achieve their designed goal of proving ownership. We posit that this impaired capability stems from two common experimental flaws that the existing research practice has committed when evaluating the robustness of watermarking algorithms: (1) incomplete adversarial evaluation and (2) overlooked adaptive attacks. We conduct a comprehensive adversarial evaluation of 10 representative watermarking schemes against six of the existing attacks and demonstrate that each of these watermarking schemes lacks robustness against at least two attacks. We also propose novel adaptive attacks that harness the adversary's knowledge of the underlying watermarking algorithm of a target model. We demonstrate that the proposed attacks effectively break all of the 10 watermarking schemes, consequently allowing adversaries to obscure the ownership of any watermarked model. We encourage follow-up studies to consider our guidelines when evaluating the robustness of their watermarking schemes via conducting comprehensive adversarial evaluation that include our adaptive attacks to demonstrate a meaningful upper bound of watermark robustness

    Vertical Federated Learning

    Full text link
    Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with different features about the same set of users jointly train machine learning models without exposing their raw data or model parameters. Motivated by the rapid growth in VFL research and real-world applications, we provide a comprehensive review of the concept and algorithms of VFL, as well as current advances and challenges in various aspects, including effectiveness, efficiency, and privacy. We provide an exhaustive categorization for VFL settings and privacy-preserving protocols and comprehensively analyze the privacy attacks and defense strategies for each protocol. In the end, we propose a unified framework, termed VFLow, which considers the VFL problem under communication, computation, privacy, and effectiveness constraints. Finally, we review the most recent advances in industrial applications, highlighting open challenges and future directions for VFL
    • …
    corecore