472 research outputs found

    Large semilattices of breadth three

    Full text link
    A 1984 problem of S.Z. Ditor asks whether there exists a lattice of cardinality aleph two, with zero, in which every principal ideal is finite and every element has at most three lower covers. We prove that the existence of such a lattice follows from either one of two axioms that are known to be independent of ZFC, namely (1) Martin's Axiom restricted to collections of aleph one dense subsets in posets of precaliber aleph one, (2) the existence of a gap-1 morass. In particular, the existence of such a lattice is consistent with ZFC, while the non-existence of such a lattice implies that omega two is inaccessible in the constructible universe. We also prove that for each regular uncountable cardinal Îș\kappa and each positive integer n, there exists a join-semilattice L with zero, of cardinality Îș+n\kappa^{+n} and breadth n+1, in which every principal ideal has less than Îș\kappa elements.Comment: Fund. Math., to appea

    Generating all finite modular lattices of a given size

    Get PDF
    Modular lattices, introduced by R. Dedekind, are an important subvariety of lattices that includes all distributive lattices. Heitzig and Reinhold developed an algorithm to enumerate, up to isomorphism, all finite lattices up to size 18. Here we adapt and improve this algorithm to construct and count modular lattices up to size 24, semimodular lattices up to size 22, and lattices of size 19. We also show that 2n−32^{n-3} is a lower bound for the number of nonisomorphic modular lattices of size nn.Comment: Preprint, 12 pages, 2 figures, 1 tabl

    Recognizing Partial Cubes in Quadratic Time

    Full text link
    We show how to test whether a graph with n vertices and m edges is a partial cube, and if so how to find a distance-preserving embedding of the graph into a hypercube, in the near-optimal time bound O(n^2), improving previous O(nm)-time solutions.Comment: 25 pages, five figures. This version significantly expands previous versions, including a new report on an implementation of the algorithm and experiments with i

    Polynomial growth of concept lattices, canonical bases and generators:: extremal set theory in Formal Concept Analysis

    Get PDF
    We prove that there exist three distinct, comprehensive classes of (formal) contexts with polynomially many concepts. Namely: contexts which are nowhere dense, of bounded breadth or highly convex. Already present in G. Birkhoff's classic monograph is the notion of breadth of a lattice; it equals the number of atoms of a largest boolean suborder. Even though it is natural to define the breadth of a context as being that of its concept lattice, this idea had not been exploited before. We do this and establish many equivalences. Amongst them, it is shown that the breadth of a context equals the size of its largest minimal generator, its largest contranominal-scale subcontext, as well as the Vapnik-Chervonenkis dimension of both its system of extents and of intents. The polynomiality of the aforementioned classes is proven via upper bounds (also known as majorants) for the number of maximal bipartite cliques in bipartite graphs. These are results obtained by various authors in the last decades. The fact that they yield statements about formal contexts is a reward for investigating how two established fields interact, specifically Formal Concept Analysis (FCA) and graph theory. We improve considerably the breadth bound. Such improvement is twofold: besides giving a much tighter expression, we prove that it limits the number of minimal generators. This is strictly more general than upper bounding the quantity of concepts. Indeed, it automatically implies a bound on these, as well as on the number of proper premises. A corollary is that this improved result is a bound for the number of implications in the canonical basis too. With respect to the quantity of concepts, this sharper majorant is shown to be best possible. Such fact is established by constructing contexts whose concept lattices exhibit exactly that many elements. These structures are termed, respectively, extremal contexts and extremal lattices. The usual procedure of taking the standard context allows one to work interchangeably with either one of these two extremal structures. Extremal lattices are equivalently defined as finite lattices which have as many elements as possible, under the condition that they obey two upper limits: one for its number of join-irreducibles, other for its breadth. Subsequently, these structures are characterized in two ways. Our first characterization is done using the lattice perspective. Initially, we construct extremal lattices by the iterated operation of finding smaller, extremal subsemilattices and duplicating their elements. Then, it is shown that every extremal lattice must be obtained through a recursive application of this construction principle. A byproduct of this contribution is that extremal lattices are always meet-distributive. Despite the fact that this approach is revealing, the vicinity of its findings contains unanswered combinatorial questions which are relevant. Most notably, the number of meet-irreducibles of extremal lattices escapes from control when this construction is conducted. Aiming to get a grip on the number of meet-irreducibles, we succeed at proving an alternative characterization of these structures. This second approach is based on implication logic, and exposes an interesting link between number of proper premises, pseudo-extents and concepts. A guiding idea in this scenario is to use implications to construct lattices. It turns out that constructing extremal structures with this method is simpler, in the sense that a recursive application of the construction principle is not needed. Moreover, we obtain with ease a general, explicit formula for the Whitney numbers of extremal lattices. This reveals that they are unimodal, too. Like the first, this second construction method is shown to be characteristic. A particular case of the construction is able to force - with precision - a high number of (in the sense of "exponentially many'') meet-irreducibles. Such occasional explosion of meet-irreducibles motivates a generalization of the notion of extremal lattices. This is done by means of considering a more refined partition of the class of all finite lattices. In this finer-grained setting, each extremal class consists of lattices with bounded breadth, number of join irreducibles and meet-irreducibles as well. The generalized problem of finding the maximum number of concepts reveals itself to be challenging. Instead of attempting to classify these structures completely, we pose questions inspired by TurĂĄn's seminal result in extremal combinatorics. Most prominently: do extremal lattices (in this more general sense) have the maximum permitted breadth? We show a general statement in this setting: for every choice of limits (breadth, number of join-irreducibles and meet-irreducibles), we produce some extremal lattice with the maximum permitted breadth. The tools which underpin all the intuitions in this scenario are hypergraphs and exact set covers. In a rather unexpected, but interesting turn of events, we obtain for free a simple and interesting theorem about the general existence of "rich'' subcontexts. Precisely: every context contains an object/attribute pair which, after removed, results in a context with at least half the original number of concepts

    Lattices of Graphical Gaussian Models with Symmetries

    Full text link
    In order to make graphical Gaussian models a viable modelling tool when the number of variables outgrows the number of observations, model classes which place equality restrictions on concentrations or partial correlations have previously been introduced in the literature. The models can be represented by vertex and edge coloured graphs. The need for model selection methods makes it imperative to understand the structure of model classes. We identify four model classes that form complete lattices of models with respect to model inclusion, which qualifies them for an Edwards-Havr\'anek model selection procedure. Two classes turn out most suitable for a corresponding model search. We obtain an explicit search algorithm for one of them and provide a model search example for the other.Comment: 29 pages, 18 figures. Restructured Section 5, results unchanged; added references in Section 6; amended example in Section 6.

    Representation Theorems Obtained by Miningacross Web Sources for Hints

    Full text link
    A representation theorem relates different mathematical structures by providing an isomorphism between them: that is, a one-to-one correspondence preserving their original properties. Establishing that the two structures substantially behave in the same way, representation theorems typically provide insight and generate powerful techniques to study the involved structures, by cross-fertilising between the methodologies existing for each of the respective branches of mathematics. When the related structures have no obvious a priori connection, however, such results can be, by their own nature, elusive. Here, we show how data-mining across distinct web sources (including the Online Encyclopedia of Integer Sequences, OEIS), was crucial in the discovery of two original representation theorems relating event structures (mathematical structures commonly used to represent concurrent discrete systems) to families of sets (endowed with elementary disjointness and subset relations) and to full graphs, respectively. The latter originally emerged in the apparently unrelated field of bioinformatics. As expected, our representation theorems are powerful, allowing to capitalise on existing theorems about full graphs to immediately conclude new facts about event structures. Our contribution is twofold: on one hand, we illustrate our novel method to mine the web, resulting in thousands of candidate connections between distinct mathematical realms; on the other hand, we explore one of these connections to obtain our new representation theorems. We hope this paper can encourage people with relevant expertise to scrutinize these candidate connections. We anticipate that, building on the ideas presented here, further connections can be unearthed, by refining the mining techniques and by extending the mined repositories.Comment: In press at IEEEXplor

    Representation theorems obtained by mining across web sources for hints

    Get PDF
    Funding: JKFB partially supported by the Austrian Science Fund under FWF Meitner project M-3338.A representation theorem relates different mathematical structures by providing an isomorphism between them: that is, a one-to-one correspondence preserving their original properties. Establishing that the two structures substantially behave in the same way, representation theorems typically provide insight and generate powerful techniques to study the involved structures, by cross-fertilising between the methodologies existing for each of the respective branches of mathematics. When the related structures have no obvious a priori connection, however, such results can be, by their own nature, elusive. Here, we show how data-mining across distinct web sources (including the Online Encyclopedia of Integer Sequences, OEIS), was crucial in the discovery of two original representation theorems relating event structures (mathematical structures commonly used to represent concurrent discrete systems) to families of sets (endowed with elementary disjointness and subset relations) and to full graphs, respectively. The latter originally emerged in the apparently unrelated field of bioinformatics. As expected, our representation theorems are powerful, allowing to capitalise on existing theorems about full graphs to immediately conclude new facts about event structures. Our contribution is twofold: on one hand, we illustrate our novel method to mine the web, resulting in thousands of candidate connections between distinct mathematical realms; on the other hand, we explore one of these connections to obtain our new representation theorems. We hope this paper can encourage people with relevant expertise to scrutinize these candidate connections. We anticipate that, building on the ideas presented here, further connections can be unearthed, by refining the mining techniques and by extending the mined repositories.Postprin
    • 

    corecore