244,187 research outputs found

    On Anomaly Ranking and Excess-Mass Curves

    Full text link
    Learning how to rank multivariate unlabeled observations depending on their degree of abnormality/novelty is a crucial problem in a wide range of applications. In practice, it generally consists in building a real valued "scoring" function on the feature space so as to quantify to which extent observations should be considered as abnormal. In the 1-d situation, measurements are generally considered as "abnormal" when they are remote from central measures such as the mean or the median. Anomaly detection then relies on tail analysis of the variable of interest. Extensions to the multivariate setting are far from straightforward and it is precisely the main purpose of this paper to introduce a novel and convenient (functional) criterion for measuring the performance of a scoring function regarding the anomaly ranking task, referred to as the Excess-Mass curve (EM curve). In addition, an adaptive algorithm for building a scoring function based on unlabeled data X1 , . . . , Xn with a nearly optimal EM is proposed and is analyzed from a statistical perspective

    Mass Volume Curves and Anomaly Ranking

    Full text link
    This paper aims at formulating the issue of ranking multivariate unlabeled observations depending on their degree of abnormality as an unsupervised statistical learning task. In the 1-d situation, this problem is usually tackled by means of tail estimation techniques: univariate observations are viewed as all the more `abnormal' as they are located far in the tail(s) of the underlying probability distribution. It would be desirable as well to dispose of a scalar valued `scoring' function allowing for comparing the degree of abnormality of multivariate observations. Here we formulate the issue of scoring anomalies as a M-estimation problem by means of a novel functional performance criterion, referred to as the Mass Volume curve (MV curve in short), whose optimal elements are strictly increasing transforms of the density almost everywhere on the support of the density. We first study the statistical estimation of the MV curve of a given scoring function and we provide a strategy to build confidence regions using a smoothed bootstrap approach. Optimization of this functional criterion over the set of piecewise constant scoring functions is next tackled. This boils down to estimating a sequence of empirical minimum volume sets whose levels are chosen adaptively from the data, so as to adjust to the variations of the optimal MV curve, while controling the bias of its approximation by a stepwise curve. Generalization bounds are then established for the difference in sup norm between the MV curve of the empirical scoring function thus obtained and the optimal MV curve
    • …
    corecore