749 research outputs found

    Exploring the State of the Art in Legal QA Systems

    Full text link
    Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. QA (Question answering systems) are designed to generate answers to questions asked in human languages. They use natural language processing to understand questions and search through information to find relevant answers. QA has various practical applications, including customer service, education, research, and cross-lingual communication. However, they face challenges such as improving natural language understanding and handling complex and ambiguous questions. Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. At this time, there is a lack of surveys that discuss legal question answering. To address this problem, we provide a comprehensive survey that reviews 14 benchmark datasets for question-answering in the legal field as well as presents a comprehensive review of the state-of-the-art Legal Question Answering deep learning models. We cover the different architectures and techniques used in these studies and the performance and limitations of these models. Moreover, we have established a public GitHub repository where we regularly upload the most recent articles, open data, and source code. The repository is available at: \url{https://github.com/abdoelsayed2016/Legal-Question-Answering-Review}

    A Survey on Legal Question Answering Systems

    Full text link
    Many legal professionals think that the explosion of information about local, regional, national, and international legislation makes their practice more costly, time-consuming, and even error-prone. The two main reasons for this are that most legislation is usually unstructured, and the tremendous amount and pace with which laws are released causes information overload in their daily tasks. In the case of the legal domain, the research community agrees that a system allowing to generate automatic responses to legal questions could substantially impact many practical implications in daily activities. The degree of usefulness is such that even a semi-automatic solution could significantly help to reduce the workload to be faced. This is mainly because a Question Answering system could be able to automatically process a massive amount of legal resources to answer a question or doubt in seconds, which means that it could save resources in the form of effort, money, and time to many professionals in the legal sector. In this work, we quantitatively and qualitatively survey the solutions that currently exist to meet this challenge.Comment: 57 pages, 1 figure, 10 table

    Text Classification: A Review, Empirical, and Experimental Evaluation

    Full text link
    The explosive and widespread growth of data necessitates the use of text classification to extract crucial information from vast amounts of data. Consequently, there has been a surge of research in both classical and deep learning text classification methods. Despite the numerous methods proposed in the literature, there is still a pressing need for a comprehensive and up-to-date survey. Existing survey papers categorize algorithms for text classification into broad classes, which can lead to the misclassification of unrelated algorithms and incorrect assessments of their qualities and behaviors using the same metrics. To address these limitations, our paper introduces a novel methodological taxonomy that classifies algorithms hierarchically into fine-grained classes and specific techniques. The taxonomy includes methodology categories, methodology techniques, and methodology sub-techniques. Our study is the first survey to utilize this methodological taxonomy for classifying algorithms for text classification. Furthermore, our study also conducts empirical evaluation and experimental comparisons and rankings of different algorithms that employ the same specific sub-technique, different sub-techniques within the same technique, different techniques within the same category, and categorie

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Deep Learning for Period Classification of Historical Texts

    Get PDF
    In this study, we address the interesting task of classifying historical texts by their assumed period of writing. This task is useful in digital humanity studies where many texts have unidentified publication dates. For years, the typical approach for temporal text classification was supervised using machine-learning algorithms. These algorithms require careful feature engineering and considerable domain expertise to design a feature extractor to transform the raw text into a feature vector from which the classifier could learn to classify any unseen valid input. Recently, deep learning has produced extremely promising results for various tasks in natural language processing (NLP). The primary advantage of deep learning is that human engineers did not design the feature layers, but the features were extrapolated from data with a general-purpose learning procedure. We investigated deep learning models for period classification of historical texts. We compared three common models: paragraph vectors, convolutional neural networks (CNN), and recurrent neural networks (RNN). We demonstrate that the CNN and RNN models outperformed the paragraph vector model and supervised machine-learning algorithms. In addition, we constructed word embeddings for each time period and analyzed semantic changes of word meanings over time
    • …
    corecore