105 research outputs found

    Light Field Denoising via Anisotropic Parallax Analysis in a CNN Framework

    Full text link
    Light field (LF) cameras provide perspective information of scenes by taking directional measurements of the focusing light rays. The raw outputs are usually dark with additive camera noise, which impedes subsequent processing and applications. We propose a novel LF denoising framework based on anisotropic parallax analysis (APA). Two convolutional neural networks are jointly designed for the task: first, the structural parallax synthesis network predicts the parallax details for the entire LF based on a set of anisotropic parallax features. These novel features can efficiently capture the high frequency perspective components of a LF from noisy observations. Second, the view-dependent detail compensation network restores non-Lambertian variation to each LF view by involving view-specific spatial energies. Extensive experiments show that the proposed APA LF denoiser provides a much better denoising performance than state-of-the-art methods in terms of visual quality and in preservation of parallax details

    Learning to Synthesize a 4D RGBD Light Field from a Single Image

    Full text link
    We present a machine learning algorithm that takes as input a 2D RGB image and synthesizes a 4D RGBD light field (color and depth of the scene in each ray direction). For training, we introduce the largest public light field dataset, consisting of over 3300 plenoptic camera light fields of scenes containing flowers and plants. Our synthesis pipeline consists of a convolutional neural network (CNN) that estimates scene geometry, a stage that renders a Lambertian light field using that geometry, and a second CNN that predicts occluded rays and non-Lambertian effects. Our algorithm builds on recent view synthesis methods, but is unique in predicting RGBD for each light field ray and improving unsupervised single image depth estimation by enforcing consistency of ray depths that should intersect the same scene point. Please see our supplementary video at https://youtu.be/yLCvWoQLnmsComment: International Conference on Computer Vision (ICCV) 201

    Depth Assisted Full Resolution Network for Single Image-based View Synthesis

    Full text link
    Researches in novel viewpoint synthesis majorly focus on interpolation from multi-view input images. In this paper, we focus on a more challenging and ill-posed problem that is to synthesize novel viewpoints from one single input image. To achieve this goal, we propose a novel deep learning-based technique. We design a full resolution network that extracts local image features with the same resolution of the input, which contributes to derive high resolution and prevent blurry artifacts in the final synthesized images. We also involve a pre-trained depth estimation network into our system, and thus 3D information is able to be utilized to infer the flow field between the input and the target image. Since the depth network is trained by depth order information between arbitrary pairs of points in the scene, global image features are also involved into our system. Finally, a synthesis layer is used to not only warp the observed pixels to the desired positions but also hallucinate the missing pixels with recorded pixels. Experiments show that our technique performs well on images of various scenes, and outperforms the state-of-the-art techniques
    • …
    corecore